【題目】如圖:A,D,E在同一條直線上,AD=3,DE=1,BD,DF分別為正方形ABCD,正方形DEFG的對(duì)角線,則三角形△BDF的面積為(  )

A.4.5
B.3
C.4
D.2

【答案】B
【解析】解:∵四邊形ABCD和四邊形DEFG均為正方形,
∴BD=AD=3 , DF=DE= , ∠BDC=45°,∠GDF=45°,
∴∠BDF=90°,
∴S△BDF=DFBD=×x3=3,
故選B.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,1)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是

A. -1,-1) B. (1,-1) C. -1,1) D. (1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】使兩個(gè)直角三角形全等的條件是

A.一銳角對(duì)應(yīng)相等B.兩銳角對(duì)應(yīng)相等

C.一條邊對(duì)應(yīng)相等D.兩條邊對(duì)應(yīng)相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,點(diǎn)E、F在對(duì)角線AC上,且∠ABF=∠CDEAECF

(1)求證:△ABF≌△CDE;

(2)當(dāng)四邊形ABCD的邊AB、AD滿足什么條件時(shí),四邊形BFDE是菱形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把多項(xiàng)式3x2+5﹣2x3﹣4x按x降冪排列,它的第三項(xiàng)是( 。
A.2x3
B.﹣2x3
C.4x
D.﹣4x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上規(guī)律可以得出第n個(gè)等式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)都是實(shí)數(shù),且.我們規(guī)定:滿足不等式的實(shí)數(shù)的所有取值的全體叫做閉區(qū)間,表示為.對(duì)于一個(gè)函數(shù),如果它的自變量與函數(shù)值滿足:當(dāng)時(shí),有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.

(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請(qǐng)判斷并說(shuō)明理由;

(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為O直徑,C、D為O上不同于A、B的兩點(diǎn),ABD=2BAC,連接CD.過(guò)點(diǎn)C作CEDB,垂足為E,直線AB與CE相交于F點(diǎn).

(1)求證:CFO的切線

(2)當(dāng)BF=5,時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,∠BAD=120°,AC=4,則該菱形的面積是(  )
A.
B.
C.
D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案