如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點,點C在⊙O上,且∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于另一點Q,如果QP=QO,則∠OCP=___________.
40°
點P是直線l上的一個動點,因而點P與線段AO有三種位置關系,在線段AO上,點P在OB上,點P在OA的延長線上.分這三種情況進行討論即可.
解答:解:①根據(jù)題意,畫出圖(1),
在△QOC中,OC=OQ,
∴∠OQC=∠OCP,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠AOC=30°,
∴∠QPO=∠OCP+∠AOC=∠OCP+30°,
在△OPQ中,∠QOP+∠QPO+∠OQC=180°,
即(∠OCP+30°)+(∠OCP+30°)+∠OCP=180°,
整理得,3∠OCP=120°,
∴∠OCP=40°.

②當P在線段OA的延長線上(如圖2)
∵OC=OQ,
∴∠OQP=(180°-∠QOC)×1/2①,
∵OQ=PQ,
∴∠OPQ=(180°-∠OQP)×1/2②,
在△OQP中,30°+∠QOC+∠OQP+∠OPQ=180°③,
把①②代入③得:
60°+∠QOC=∠OQP,
∵∠OQP=∠QCO,
∴∠QOC+2∠OQP=∠QOC+2(60°+∠QOC)=180°,
∴∠QOC=20°,則∠OQP=80°
∴∠OCP=100°;

③當P在線段OA的反向延長線上(如圖3),
∵OC=OQ,
∴∠OCP=∠OQC=(180°-∠COQ)×1/2①,
∵OQ=PQ,
∴∠P=(180°-∠OQP)×1/2②,
∵∠AOC=30°,
∴∠COQ+∠POQ=150°③,
∵∠P=∠POQ,2∠P=∠OCP=∠OQC④,
①②③④聯(lián)立得
∠P=10°,
∴∠OCP=180°-150°-10°=20°.
故答案為:40°、20°、100°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

已知圓錐的底面半徑為3 cm,側(cè)面積為15cm2,則這個圓錐的高為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,已知⊙O的半徑為5cm,弦AB的長為8cm,P是AB延長線上一點,BP=2cm,則tan∠OPA等于(▲)
A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,AB、AC切⊙O于B、C兩點,∠A=50°,點P是圓上異于B、C的一動點,則∠BPC的度數(shù)是  (    )

A 65°   B 115°   C 65°或115°   D 130°或50°

 

 
    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(6分)已知圓錐的底面直徑是8,母線長是16,求它的側(cè)面展開圖的圓心角與圓錐的全面積。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題


小題1:+
小題2:如圖,P是⊙O外一點,OP垂直于弦AB于點C,交于點D,連結(jié)OA、OB、AP、BP。根據(jù)以上條件,寫出三個正確結(jié)論(OA=OB除外):(6分)

                            ­­___;                      ③                          。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

⊙O的半徑為3cm,點M是⊙O外一點,OM=4cm,則以M為圓心且與⊙O相切的圓的半徑一定是(   )
A.1cm或7cmB.1cmC.7cmD.不確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分7分)
(1)(3分) 解不等式組
(2)(4分)已知:如圖,⊙O1與坐標軸交于A(1,0)、B(5,0)兩點,點O1的縱坐標為.求⊙O1的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中半⊙P與數(shù)軸相切于點A,且此時△MPA為等邊三角形.
解答下列問題:(各小問結(jié)果保留π)
(1)位置Ⅰ中的點O到直線MN的距離為   ;
位置Ⅱ中的半⊙P與數(shù)軸的位置關系是     ;
(2)位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù)為   ;
(3)求OA的長.

查看答案和解析>>

同步練習冊答案