【題目】如圖,拋物線y=ax2﹣(2a+1)x+b的圖象經(jīng)過(guò)(2,﹣1)和(﹣2,7)且與直線y=kx﹣2k﹣3相交于點(diǎn)P(m,2m﹣7).
(1)求拋物線的解析式;
(2)求直線y=kx﹣2k﹣3與拋物線y=ax2﹣(2a+1)x+b的對(duì)稱(chēng)軸的交點(diǎn)Q的坐標(biāo);
(3)在y軸上是否存在點(diǎn)T,使△PQT的一邊中線等于該邊的一半?若存在,求出點(diǎn)T的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

【答案】
(1)解:∵拋物線y=ax2﹣(2a+1)x+b的圖象經(jīng)過(guò)(2,﹣1)和(﹣2,7),

,

解得 ,

∴拋物線的解析式為y= x2﹣2x+1


(2)解:∵拋物線的圖象經(jīng)過(guò)點(diǎn)P(m,2m﹣7),

∴2m﹣7= m2﹣2m+1,

解得m1=m2=4,

∴點(diǎn)P的坐標(biāo)為(4,1),

∵直線y=kx﹣2k﹣3經(jīng)過(guò)點(diǎn)P,

∴4k﹣2k﹣3=1,

解得k=2,

∴直線的解析式為y=2x﹣7,

∵y= x2﹣2x+1= (x﹣2)2﹣1,

∴拋物線的對(duì)稱(chēng)軸為直線x=2,

∴在y=2x﹣7中,當(dāng)x=2時(shí),y=2×2﹣7=﹣3,

∴點(diǎn)Q的坐標(biāo)為(2,﹣3)


(3)解:設(shè)點(diǎn)T的坐標(biāo)為(0,t),M為PQ的中點(diǎn),連結(jié)TM,根據(jù)題意得:

TM= PQ,即TM=PM=QM,

∴點(diǎn)T在以PQ為直徑的圓上,

∴∠PTQ=90°,

∴△PQT為直角三角形,

同理,點(diǎn)M為PT或QT的中點(diǎn)時(shí),△PQT仍為直角三角形,

作PA⊥y軸于A,交直線x=2于點(diǎn)C,QB⊥y軸于B,則AT=|1﹣t|,BT=|﹣3﹣t|,

∵PA=4,QB=2,PC=2,CQ=4,

∴PQ= = =2 ,

①當(dāng)∠PTQ=90°時(shí),

∵PQ2=TQ2+TP2=BT2+QB2+PA2+AT2

=|﹣3﹣t|2+22+|1﹣t|2+42=20,

∴2t2+4t+10=0,即(t+1)2=﹣4,

∵(t+1)2≥0,

∴此方程無(wú)解;

②當(dāng)∠PQT=90°時(shí),PQ2+QT2=PT2,

∴(2 2+22+|﹣3﹣t|2=42+|1﹣t|2

解得t=﹣2;

③當(dāng)∠QPT=90°時(shí),TQ2=PT2+PQ2,

∴QB2+BT2=PA2+AT2+(2 2,

∴4+|﹣3﹣t|2=16+|1﹣t|2+20,

解得t=3,

綜上所述,在y軸上存在點(diǎn)T,其坐標(biāo)分別為(0,3)和(0,﹣2),使△PQT的一邊中線等于該邊的一半.


【解析】(1)根據(jù)拋物線y=ax2﹣(2a+1)x+b的圖象經(jīng)過(guò)(2,﹣1)和(﹣2,7),求得a,b的值即可得到拋物線的解析式;(2)先根據(jù)拋物線的圖象經(jīng)過(guò)點(diǎn)P(m,2m﹣7),求得點(diǎn)P的坐標(biāo),再根據(jù)直線y=kx﹣2k﹣3經(jīng)過(guò)點(diǎn)P,求得k的值,最后根據(jù)拋物線的對(duì)稱(chēng)軸為直線x=2,求得點(diǎn)Q的坐標(biāo);(3)設(shè)點(diǎn)T的坐標(biāo)為(0,t),M為PQ的中點(diǎn),連結(jié)TM,分三種情況討論:∠PTQ=90°時(shí),∠PQT=90°時(shí),∠QPT=90°時(shí),分別根據(jù)勾股定理列出關(guān)于t的方程進(jìn)行求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)________;(2)_______°________________″;

(3)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中顯示了10名同學(xué)平均每周用于閱讀課外書(shū)的時(shí)間和用于看電視的時(shí)間(單位:小時(shí))。

(1)用有序?qū)崝?shù)對(duì)表示圖中各點(diǎn)。

(2)圖中有一個(gè)點(diǎn)位于方格的對(duì)角線上,這表示什么意思?

(3)圖中方格紙的對(duì)角線的左上方的點(diǎn)有什么共同的特點(diǎn)?它右下方的點(diǎn)呢?

(4)估計(jì)一下你每周用于閱讀課外書(shū)的時(shí)間和用于看電視的時(shí)間,在圖上描出來(lái),這個(gè)點(diǎn)位于什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;

(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷(xiāo)發(fā)現(xiàn):銷(xiāo)售單價(jià)x(元/件)與每天銷(xiāo)售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫(xiě)出每天的利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷(xiāo)發(fā)現(xiàn):銷(xiāo)售單價(jià)x(元/件)與每天銷(xiāo)售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫(xiě)出每天的利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】太陽(yáng)是熾熱巨大的氣體星球,正以每秒萬(wàn)噸的速度失去重量.太陽(yáng)的直徑約為萬(wàn)千米,而地球的半徑約為千米.請(qǐng)將上述三個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示,然后計(jì)算:

(1)在一年內(nèi)太陽(yáng)要失去多少萬(wàn)噸重量?

(2)在太陽(yáng)的直徑上能擺放多少個(gè)地球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于0)的除法運(yùn)算叫做除方,例如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類(lèi)比有理數(shù)的乘方,我們把2÷2÷2記作2,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3),讀作“﹣3的圈4次方,一般地,把 (a≠0)記作 a,讀作“a的圈n次方”.

初步探究

(1)直接寫(xiě)出計(jì)算結(jié)果:2=________,=________;

(2)關(guān)于除方,下列說(shuō)法錯(cuò)誤的是________

A.任何非零數(shù)的圈2次方都等于1; B.對(duì)于任何正整數(shù)n,1=1;

C.3=4 ; D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).

深入思考

我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?

(1)試一試:仿照上面的算式,將下列運(yùn)算結(jié)果直接寫(xiě)成冪的形式.

(﹣3)=________;5=________;=________.

(2)想一想:將一個(gè)非零有理數(shù)a的圈n次方寫(xiě)成冪的形式等于________;

(3)算一算:24÷23+(-16)×2

查看答案和解析>>

同步練習(xí)冊(cè)答案