【題目】△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B,
(1)如圖(1)當射線DN經過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.
(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉,DM,DN分別交線段AC,AB于E,F點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結論.
(3)在圖(2)中,若AB=AC=10,BC=12,當△DEF的面積等于△ABC的面積的時,求線段EF的長.
【答案】(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)5.
【解析】
(1)根據等腰三角形的性質以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質得出,從而得出△BDF∽△CED∽△DEF.
(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可
解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.
(2)△BDF∽△CED∽△DEF,證明如下:
∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,
又∵∠EDF=∠B,
∴∠BFD=∠CDE.
∵AB=AC,
∴∠B=∠C.
∴△BDF∽△CED.
∴.
∵BD=CD,
∴,即.
又∵∠C=∠EDF,
∴△CED∽△DEF.
∴△BDF∽△CED∽△DEF.
(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.
∵AB=AC,D是BC的中點,
∴AD⊥BC,BD=BC=6.
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣62,
∴AD=8.
∴S△ABC=BCAD=×12×8=48,
S△DEF=S△ABC=×48=12.
又∵ADBD=ABDH,
∴.
∵△BDF∽△DEF,
∴∠DFB=∠EFD.
∵DH⊥BF,DG⊥EF,
∴∠DHF=∠DGF.
又∵DF=DF,
∴△DHF≌△DGF(AAS).
∴DH=DG=.
∵S△DEF=·EF·DG=·EF·=12,
∴EF=5.
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,完成任務:
自相似圖形,定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為______;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.則△ACD與△ABC的相似比為_____;則△BCD與△ABC的相似比為_____;
(3)現有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=_____(用含b的式子表示):
②如圖3﹣2,若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=______(用含n,b的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經過點P,C是⊙O上一點,連結PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關系,并說明理由;
(2)若點C是弧AB的中點,已知AB=2,求CECP的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BA=BE,∠A=∠E,∠ABE=∠CBD,ED交BC于點F,且∠FBD=∠D.
求證:AC∥BD.
證明:∵∠ABE=∠CBD(已知),
∴∠ABE+∠EBC=∠CBD+∠EBC( )
即∠ABC=∠EBD
在△ABC和△EBD中,
,
∴△ABC≌△EBD( ),
∴∠C=∠D( )
∵∠FBD=∠D,
∴∠C= (等量代換),
∴AC∥BD( )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格中,每個小正方形的邊長是個單位長度,以點為位似中心,在網格中畫,使與位似,且與的位似比為,則點的坐標可以為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+bx+c的圖象經過點A(﹣1,0),C(0,3).
(1)求二次函數的解析式;
(2)在圖中,畫出二次函數的圖象;
(3)根據圖象,直接寫出當y≤0時,x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個袋中均裝有三張除所標數值外完全相同的卡片,甲袋中的三張卡片上所標有的三個數值為﹣7,﹣1,3.乙袋中的三張卡片所標的數值為﹣2,1,6.先從甲袋中隨機取出一張卡片,用x表示取出的卡片上的數值,再從乙袋中隨機取出一張卡片,用y表示取出卡片上的數值,把x、y分別作為點A的橫坐標和縱坐標.
(1)用適當的方法寫出點A(x,y)的所有情況.
(2)求點A落在第三象限的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在校園歌手大賽中,甲、乙兩位同學的表現分外突出,現場A、B、C、D、E、F六位評委的打分情況以及隨機抽取的50名同學的民意調查結果分別如下統(tǒng)計表和不完整的條形統(tǒng)計圖:(說明:隨機抽取的50名同學每人必須從“好”、“較好”、“一般”中選一票投給每個選手)
A | B | C | D | E | F | |
甲 | 89 | 97 | 90 | 93 | 95 | 94 |
乙 | 89 | 92 | 90 | 97 | 94 | 94 |
(1)a= ,六位評委對乙同學所打分數的中位數是 ,并補全條形統(tǒng)計圖;
(2)學校規(guī)定評分標準如下:去掉評委評分中最高和最低分,再算平均分并將平均分與民意測評分按2:3計算最后得分.求甲、乙兩位同學的最后得分.(民意測評分=“好”票數×2+“較好”票數×1+“一般”票數×0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),,直線AB和CH交于點O,分別交于D、E兩點,已知,,.
(1)嘗試探究:在圖(1)中,求DB和AD的長;
(2)類比延伸:平移AB使得A與H重合,如圖(2)所示,過點D作,若,求線段BF的長;
(3)拓展遷移:如圖(3),若的面積是10,點D、E分別位于AB、CA上,,點F在BC上且,,如果的面積和四邊形FCED的面積相等,求這個相等的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com