精英家教網 > 初中數學 > 題目詳情

如圖1,矩形OABC頂點B的坐標為(8,3),定點D的坐標為(12,0),動點P從點O出發(fā),以每秒2個單位長度的速度沿x軸的正方向勻速運動,動點Q從點D出發(fā),以每秒1個單位長度的速度沿x軸的負方向勻速運動,PQ兩點同時運動,相遇時停止.在運動過程中,以PQ為斜邊在x軸上方作等腰直角三角形PQR.設運動時間為t秒.
(1)當t=    時,△PQR的邊QR經過點B;
(2)設△PQR和矩形OABC重疊部分的面積為S,求S關于t的函數關系式;
(3)如圖2,過定點E(5,0)作EF⊥BC,垂足為F,當△PQR的頂點R落在矩形OABC的內部時,過點R作x軸、y軸的平行線,分別交EF、BC于點M、N,若∠MAN=45°,求t的值.

(1)1秒
(2)
(3)t的值為(8﹣2

解析試題分析:(1)△PQR的邊QR經過點B時,△ABQ構成等腰直角三角形,則有AB=AQ,由此列方程求出t的值;
(2)在圖形運動的過程中,有三種情形,需要分類討論,避免漏解;
(3)由已知可得ABFE為正方形;其次通過旋轉,由三角形全等證明MN=EM+BN;設EM=m,BN=n,在Rt△FMN中,由勾股定理得到等式:mn+3(m+n)﹣9=0,由此等式列方程求出時間t的值.
試題解析:(1)△PQR的邊QR經過點B時,△ABQ構成等腰直角三角形,
∴AB=AQ,即3=4﹣t,
∴t=1.
即當t=1秒時,△PQR的邊QR經過點B.
(2)①當0≤t≤1時,如答圖1﹣1所示.

設PR交BC于點G,
過點P作PH⊥BC于點H,則CH=OP=2t,GH=PH=3.
S=S矩形OABC﹣S梯形OPGC
=8×3﹣(2t+2t+3)×3
=﹣6t+;
②當1<t≤2時,如答圖1﹣2所示.

設PR交BC于點G,RQ交BC、AB于點S、T.
過點P作PH⊥BC于點H,則CH=OP=2t,GH=PH=3.
QD=t,則AQ=AT=4﹣t,
∴BT=BS=AB﹣AQ=3﹣(4﹣t)=t﹣1.
S=S矩形OABC﹣S梯形OPGC﹣S△BST
=8×3﹣(2t+2t+3)×3﹣(t﹣1)2
=﹣t2﹣5t+19;
③當2<t≤4時,如答圖1﹣3所示.

設RQ與AB交于點T,則AT=AQ=4﹣t.
PQ=12﹣3t,∴PR=RQ=(12﹣3t).
S=S△PQR﹣S△AQT
=PR2AQ2
=(12﹣3t)2(4﹣t)2
=t2﹣14t+28.
綜上所述,S關于t的函數關系式為:

(3)∵E(5,0),∴AE=AB=3,
∴四邊形ABFE是正方形.
如答圖2,將△AME繞點A順時針旋轉90°,得到△ABM′,其中AE與AB重合.
∵∠MAN=45°,∴∠EAM+∠NAB=45°,
∴∠BAM′+∠NAB=45°,
∴∠MAN=∠M′AN.
連接MN.在△MAN與△M′AN中,

∴△MAN≌△M′AN(SAS).
∴MN=M′N=M′B+BN
∴MN=EM+BN.

設EM=m,BN=n,則FM=3﹣m,F(xiàn)N=3﹣n.
在Rt△FMN中,由勾股定理得:FM2+FN2=MN2,即(3﹣m)2+(3﹣n)2=(m+n)2,
整理得:mn+3(m+n)﹣9=0.  ①
延長MR交x軸于點S,則m=EM=RS=PQ=(12﹣3t),
∵QS=PQ=(12﹣3t),AQ=4﹣t,
∴n=BN=AS=QS﹣AQ=(12﹣3t)﹣(4﹣t)=﹣t+2.
∴m=3n,
代入①式,化簡得:n2+4n﹣3=0,
解得n=﹣2+或n=﹣2﹣(舍去)
∴2﹣t=﹣2+
解得:t=8﹣2
∴若∠MAN=45°,則t的值為(8﹣2)秒.
考點:1、圖形面積;2、全等三角形;3、勾股定理;4、正方形

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

已知拋物線>0)的對稱軸為直線,且經過點(-3,),(4,),試比較的大。    (填“>”,“<”或“=”).

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

如圖,一條拋物線(m<0)與x軸相交于A、B兩點(點A在點B的左側).若點M、N的坐標分別為(0,—2)、(4,0),拋物線與直線MN始終有交點,線段AB的長度的最小值為            

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

拋物線y=ax2+bx+c(a≠0)經過點(1,2)和(﹣1,﹣6)兩點,則a+c=
   

查看答案和解析>>

科目:初中數學 來源: 題型:計算題

某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量箱與銷售價元/箱之間的函數關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價(元/箱)之間的函數關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知關于x的方程mx2﹣3(m+1)x+2m+3=0.
(1)求證:無論m取任何實數,該方程總有實數根;
(2)若m≠0,拋物線y=mx2﹣3(m+1)x+2m+3與x軸的交點到原點的距離小于2,且交點的橫坐標是整數,求m的整數值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商店銷售一種商品,每件的進價為2.5元,根據市場調查,銷售量與銷售單價滿足如下關系:在一段時間內,單價是13.5元時,銷售量為500件,而單價每降低1元,就可以多售出200件.請你分析,銷售單價多少時,可以獲利最大?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,二次函數y=ax2+bx(a<0)的圖象過坐標原點O,與x軸的負半軸交于點A,過A點的直線與y軸交于B,與二次函數的圖象交于另一點C,且C點的橫坐標為﹣1,AC:BC=3:1.
(1)求點A的坐標;
(2)設二次函數圖象的頂點為F,其對稱軸與直線AB及x軸分別交于點D和點E,若△FCD與△AED相似,求此二次函數的關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

同步練習冊答案