【題目】已知中,,,.點(diǎn)由出發(fā)沿向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)由出發(fā)沿向點(diǎn)勻速運(yùn)動(dòng),它們的速度相同,點(diǎn)在上,,且點(diǎn)在點(diǎn)的下方,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn),也停止運(yùn)動(dòng),連接,設(shè).解答下列問(wèn)題:
如圖,當(dāng)為何值時(shí),為直角三角形;
如圖,把沿翻折,使點(diǎn)落在點(diǎn).
①當(dāng)為何值時(shí),四邊形為菱形?并求出菱形的面積;
②如圖,分別取,的中點(diǎn),,在整個(gè)運(yùn)動(dòng)過(guò)程中,則線段掃過(guò)的區(qū)域的形狀為________,其面積為________.
【答案】平行四邊形
【解析】
(1)△ADF為直角三角形,有兩種可能:∠ADF=90°或∠AFD=90°,根據(jù)銳角三角函數(shù),分兩種情況進(jìn)行討論,列方程求解即可;
(2)①根據(jù)菱形的判定,可知當(dāng)AD=DF時(shí),四邊形ADFD′為菱形,根據(jù)銳角三角函數(shù)列方程求出x,計(jì)算菱形的面積即可;②根據(jù)三角形中位線定理可知,線段MN掃過(guò)的區(qū)域的形狀是平行四邊形,其面積為.
解:(1)∵∠ACB=90°,BC=8,tanA=
∴BC=8,AB=10,
∴AD=x,BE=x,AF=6-x,
當(dāng)∠ADF=90°,如圖1左圖,
∵tanA=
∴cosA=
∴
x=;
當(dāng)∠AFD=90°,如圖1右圖,
∵tanA=
∴cosA=
∴
x=,
∴當(dāng)
x=或x=,
△ADF為直角三角形;
(2)①如圖2,
∵AD=AD′,D′F=DF,
∴當(dāng)AD=DF時(shí),四邊形ADFD′為菱形,
∴連接DD′⊥AF于G,AG=,
∵tanA=,
∴cosA=,
∴,
∴x=,
S菱形=×DD′×AF=××=;
②平行四邊形,
∵M(jìn)、N分別為D′F、D′E的中點(diǎn),
∴MN∥EF,MN=EF=2,
∴線段MN掃過(guò)的區(qū)域的形狀是平行四邊形,
當(dāng)D運(yùn)動(dòng)到C,則F正好運(yùn)動(dòng)到A,此時(shí)MA=D′A=DA=3,
∵∠DAB=∠D′AB,
∴tanA=tan∠D′AB=,
點(diǎn)M到AB的距離設(shè)為4x,則(3x)2+(4x)2=32,
解得:x=,
4x=
∴線段MN掃過(guò)的區(qū)域的形狀是平行四邊形的面積=2×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與,軸分別交于點(diǎn),,與反比例函數(shù)圖象交于點(diǎn),,過(guò)點(diǎn)作軸的垂線交該反比例函數(shù)圖象于點(diǎn).
求點(diǎn)的坐標(biāo).
若.
①求的值.
②試判斷點(diǎn)與點(diǎn)是否關(guān)于原點(diǎn)成中心對(duì)稱?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(-2,1),B(-3,4),C(-1,3),過(guò)點(diǎn)(l,0)作x軸的垂線.
(1)作出△ABC關(guān)于直線的軸對(duì)稱圖形△;
(2)直接寫(xiě)出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內(nèi)有一點(diǎn)P(m,n),則點(diǎn)P關(guān)于直線的對(duì)稱點(diǎn)P1的坐標(biāo)為(___,___)(結(jié)果用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)買(mǎi)60件A商品和30件B商品共用了1080元,購(gòu)買(mǎi)50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價(jià)分別是多少元?
(2)已知該商店購(gòu)買(mǎi)B商品的件數(shù)比購(gòu)買(mǎi)A商品的件數(shù)的2倍少4件,如果需要購(gòu)買(mǎi)A、B兩種商品的總件數(shù)不少于32件,且該商店購(gòu)買(mǎi)的A、B兩種商品的總費(fèi)用不超過(guò)296元,那么該商店有哪幾種購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線l與拋物線相交于A(1,),B(4,0)兩點(diǎn).
(1)求出拋物線的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)P是線段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線于點(diǎn)M,過(guò)點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形為菱形,點(diǎn)為對(duì)角線上的一個(gè)動(dòng)點(diǎn),連接并延長(zhǎng)交射線于點(diǎn),連接.
求證:;
是否存在這樣一個(gè)菱形,當(dāng)時(shí),剛好?若存在,求出的度數(shù);若不存在,請(qǐng)說(shuō)明理由;
若,且當(dāng)為等腰三角形時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通管理?xiàng)l例》規(guī)定:小汽車在城街路上行駛速度不得超過(guò)70 km/h,如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面車速檢測(cè)儀 A的正前方60 m處的C點(diǎn),過(guò)了5 s后,測(cè)得小汽車所在的B點(diǎn)與車速檢測(cè)儀A之間的距離為100 m.
(1)求B,C間的距離.
(2)這輛小汽車超速了嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1是一種折疊式可調(diào)節(jié)的魚(yú)竿支架的示意圖,AE是地插,用來(lái)將支架固定在地面上,支架AB可繞A點(diǎn)前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)AB與地面的夾角,支架CD可繞AB上定點(diǎn)C前后轉(zhuǎn)動(dòng),用來(lái)調(diào)節(jié)CD與AB的夾角,支架CD帶有伸縮調(diào)節(jié)長(zhǎng)度的伸縮功能,已知BC=60cm.
(1)若支架AB與地面的夾角∠BAF=35°,支架CD與釣魚(yú)竿DB垂直,釣魚(yú)竿DB與地面AF平行,則支架CD的長(zhǎng)度為 cm(精確到0.1cm);(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
(2)如圖2,保持(1)中支架AB與地面的夾角不變,調(diào)節(jié)支架CD與AB的夾角,使得∠DCB=85°,若要使釣魚(yú)竿DB與地面AF仍然保持平行,則支架CD的長(zhǎng)度應(yīng)該調(diào)節(jié)為多少?(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com