【題目】如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB延長線于點A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結果保留π)
【答案】(1)證明見解析;(2)6πcm2.
【解析】試題分析:連接BC,OD,OC,設OC與BD交于點M.(1)求出∠COB的度數,求出∠A的度數,根據三角形的內角和定理求出∠OCA的度數,根據切線的判定推出即可;
(2)證明△CDM≌△OBM,從而得到S陰影=S扇形BOC.
試題解析:如圖,連接BC,OD,OC,設OC與BD交于點M.
(1)根據圓周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC為半徑,∴AC是⊙O的切線;
(2)由(1)知,AC為⊙O的切線,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂徑定理可知,MD=MB=BD=3.在Rt△OBM中,∠COB=60°,OB==6.
在△CDM與△OBM中,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM
∴陰影部分的面積S陰影=S扇形BOC==6π(cm2).
科目:初中數學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉,記旋轉角為θ.
(1)問題發(fā)現
①當θ=0°時,= ;
②當θ=180°時,= .
(2)拓展探究
試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;
(3)問題解決
①在旋轉過程中,BE的最大值為 ;
②當△ADE旋轉至B、D、E三點共線時,線段CD的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是規(guī)格為的正方形網格,請在所給網格中按下列要求操作:
(1)請在網格中建立平面直角坐標系,使點A的坐標為,點的坐標為;
(2)在第二象限內的格點上找一點,使點與線段組成一個以為底的等腰三角形,且腰長是無理數,畫出,則點的坐標是 ,的周長是 (結果保留根號);
(3)作出關于軸對稱的.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,已知,平分外角,平分外角.直接寫出和的數量關系,不必證明;
(2)如圖2,已知,和三等分外角,和三等分外角.試確定和的數量關系,并證明你的猜想;(不寫證明依據)
(3)如圖3,已知,、和四等分外角,、和四等分外角.試確定和的數量關系,并證明你的猜想;(不寫證明依據)
(4)如圖4,已知,將外角進行分,是臨近邊的等分線,將外角進行等分,是臨近邊的等分線,請直接寫出和的數量關系,不必證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,為響應人民政府“形象重于生命”的號召,規(guī)劃部門在甲建筑物的頂部點測得條幅頂端的仰角為,測得條幅底端的俯角為,已知條幅長,則底部不能直接到達的甲、乙兩建筑物之間的水平距離的長為________.(答案可帶根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=8,點D是邊BC上(不與B,C重合)一動點,∠ADE=∠B=a,DE交AC于點E,下列結論:①AD2=AE.AB;②1.8≤AE<5;⑤當AD=時,△ABD≌△DCE;④△DCE為直角三角形,BD為4或6.25.其中正確的結論是_____.(把你認為正確結論序號都填上)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著中國經濟的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數據:≈1.7,≈1.4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點D是BC的中點,點E、F分別是邊AB、AC(含線段AB、AC的端點)上的動點,且∠EDF=120°,小明和小慧對這個圖形展開如下研究:
問題初探:
(1)如圖1,小明發(fā)現:當∠DEB=90°時,BE+CF=nAB,則n的值為______;
問題再探:
(2)如圖2,在點E、F的運動過程中,小慧發(fā)現兩個有趣的結論:
①DE始終等于DF;②BE與CF的和始終不變;請你選擇其中一個結論加以證明.
成果運用
(3)若邊長AB=4,在點E、F的運動過程中,記四邊形DEAF的周長為L,L=DE+EA+AF+FD,則周長L的變化范圍是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com