【題目】如圖,中,,,,點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)以的速度運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿路徑向終點(diǎn)以的速度運(yùn)動(dòng),兩點(diǎn)都要到達(dá)相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng).分別過和作于,于,則當(dāng)運(yùn)動(dòng)時(shí)間____________時(shí),與去全等.
【答案】2或4.5或14.
【解析】
易證∠MEC=∠CFN,∠MCE=∠CNF.只需MC=NC,就可得到△MEC與△CFN全等,然后只需根據(jù)點(diǎn)M和點(diǎn)N不同位置進(jìn)行分類討論即可解決問題.
①當(dāng)0≤t<時(shí),點(diǎn)M在AC上,點(diǎn)N在BC上,如下圖所示,
此時(shí)有AM=t,BN=3t,AC=7,BC=11.
當(dāng)MC=NC時(shí),即7-t=11-3t時(shí),解得t=2,
∵M(jìn)E⊥l,NF⊥l,∠ACB=90°,
∴∠MEC=∠CFN=∠ACB=90°.
∴∠MCE=90°-∠FCN=∠CNF.
在△MEC和△CFN中,
∠MCE=∠CNF,∠MEC=∠CFN,MC=NC.
∴△MEC≌△CFN(AAS);
②當(dāng)≤t<7時(shí),點(diǎn)M在AC上,點(diǎn)N也在AC上,
當(dāng)M、N重合時(shí),兩三角形全等,
此時(shí)MC=NC,即7-t=3t-11,解得t=4.5;
③當(dāng)7<t<18時(shí),點(diǎn)N停在點(diǎn)A處,點(diǎn)N在BC上,如下圖所示,
當(dāng)MC=NC即t-7=7,也即t=14時(shí),
同理可得:△MEC≌△CFN.
綜上所述:當(dāng)t等于2或4.5或14秒時(shí),與去全等.
故答案為:2或4.5或14.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( 。
A.y﹣5y﹣6=(y﹣6)(y+1)B.a+4a﹣3=a(a+4)﹣3
C.x(x﹣1)=x﹣xD.m+n=(m+n)(m﹣n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展“陽光體育”活動(dòng),共開設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目.為了解學(xué)生最喜愛哪一種項(xiàng)目,童威隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出)
(1)本次被調(diào)查的學(xué)生人數(shù)為 ,扇形統(tǒng)計(jì)圖中“跑步”所對的圓心角為 度.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名學(xué)生,請估計(jì)全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在中,,,,若動(dòng)點(diǎn)P從點(diǎn)A開始沿著的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)時(shí),的面積是___________;
(2)如圖(2)當(dāng)t為何值時(shí),AP平分;
(3)當(dāng)t為何值時(shí),為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(模型建立)(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點(diǎn)C,過A作AD⊥ED于點(diǎn)D,過B作BE⊥ED于點(diǎn)E,求證:△BEC≌△CDA.
(模型應(yīng)用)(2)①已知直線l1:y=x+3與坐標(biāo)軸交于點(diǎn)A、B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;
②如圖3,長方形ABCO,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(8,﹣6),點(diǎn)A、C分別在坐標(biāo)軸上,點(diǎn)P是線段BC上的動(dòng)點(diǎn),若△APD是以點(diǎn)D為直角頂點(diǎn)的等腰直角三角形,當(dāng)點(diǎn)D在直線y=﹣2x+5上時(shí),直接寫出點(diǎn)D的坐標(biāo),并寫出整個(gè)運(yùn)動(dòng)過程中點(diǎn)D的縱坐標(biāo)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,DC=AE,AE是BC邊上的中線,過點(diǎn)C作CF⊥AE,垂足為點(diǎn)F,過點(diǎn)B作BD⊥BC交CF的延長線于點(diǎn)D.
(1)求證:AC=CB; (2)若AC=12 cm,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)分別為,,且,圖象上有一點(diǎn)在軸下方,對于以下說法:
①;②是方程的解;③;
④.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格中每個(gè)小正方形的邊長為1,點(diǎn)B、C的坐標(biāo)分別為(-1, 3), (0, 1).
(1)建立符合條件的直角坐標(biāo)系(要求標(biāo)出x軸,y軸和原點(diǎn)),并寫出點(diǎn)A的坐標(biāo)
(2)線段AB上任意一點(diǎn)的坐標(biāo)可以表示為
(3)在y軸上找到一點(diǎn)P,使得S△ABP = 3S△ABC,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com