【題目】把下列各式分解因式:
(1)3x﹣12x3
(2)(x2+4)2﹣16x2
(3)y(y+4)﹣4(y+1)
(4)
.
【答案】
(1)
解:3x﹣12x3=3x(1﹣4x2)=3x(1﹣2x)(1+2x),
(2)
解:(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2,
(3)
解:y(y+4)﹣4(y+1)=y2+4y﹣4y﹣4=(y+2)(y﹣2)
(4)
解: =2x2﹣1﹣x4=﹣(x4﹣2x2+1)=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2
【解析】(1)先提取公因式,再用平方差公式分解即可;(2)先用平方差公式,再用完全平方公式分解即可;(3)先用乘法公式展開,再合并,最后用平方差公式分解即可;(3)先用乘法公式展開,再提取公因式,最后用完全平方公式和平方差公式分解即可;
【考點精析】關(guān)于本題考查的因式分解的定義和因式分解的應(yīng)用,需要了解因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止;因式分解是整式乘法的逆向變形,可以應(yīng)用與數(shù)字計算、求值、整除性問題、判斷三角形的形狀、解方程才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c分別交x軸于A(4,0)、B(﹣1,0),交y軸于點C(0,﹣3),過點A的直線y=﹣ x+3交拋物線于另一點D.
(1)求拋物線的解析式及點D的坐標(biāo);
(2)若點P位x軸上的一個動點,點Q在線段AC上,且Q到x軸的距離為 ,連接PC、PQ,當(dāng)△PCQ的周長最小時,求出點P的坐標(biāo);
(3)如圖2,在(2)的結(jié)論下,連接PD,在平面內(nèi)是否存在△A1P1D1 , 使△A1P1D1≌△APD(點A1、P1、D1的對應(yīng)點分別是A、P、D,A1P1平行于y軸,點P1在點A1上方),且△A1P1D1的兩個頂點恰好落在拋物線上?若存在,請求出點A1的橫坐標(biāo)m,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,E為BC上的一點,BE=2,F(xiàn)為AB上的一點,AF=3,P為AC上一點,則PF+PE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對面一樓房CD的樓底C,樓頂D處,測得塔頂A的仰角為45°和30°,已知樓高CD為10m,求塔的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:
觀察下列等式: , , ,
將以上三個等式兩邊分別相加得:
.
(1)直接寫出下列各式的計算結(jié)果:
=
(2)猜想并寫出: = ( ﹣ ).
(3)探究并解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)將一張長方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.
(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中畫出直線y=x+1的圖象,并根據(jù)圖象回答下列問題:
(1)寫出直線與x軸、y軸的交點坐標(biāo);
(2)求出直線與坐標(biāo)軸圍成的三角形的面積;
(3)若直線y=kx+b與直線y=x+1關(guān)于y軸對稱,求k,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中AD是∠A的外角平分線,P是AD上一動點且不與點A、D重合,記PB+PC=a,AB+AC=b,則a、b的大小關(guān)系是( )
A.a>b B.a=b C.a<b D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com