【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交BC的延長(zhǎng)線于M,∠A=40°.
⑴求∠NMB的大;
⑵若將圖中的∠A的度數(shù)改為70°,其余條件不變,則∠NMB= ;
⑶你發(fā)現(xiàn)有什么樣的規(guī)律?若將∠A改為鈍角,對(duì)這個(gè)問(wèn)題規(guī)律性的認(rèn)識(shí)是否需要加以修改?
【答案】(1)20°;(2)35°;(3)規(guī)律為:在等腰△ABC中,當(dāng)AB=AC,∠A是銳角時(shí),∠NMB的度數(shù)恰好為頂角∠A度數(shù)的一半;當(dāng)∠A為鈍角時(shí),上述規(guī)律依然成立,不需要修改.
【解析】
(1)在等腰三角形ABC中可求出∠B,然后在△BMN中根據(jù)內(nèi)角和求解;
(2)解法同(1);
(3)依照(1)(2)的解法,找出∠NMB與∠A的關(guān)系,當(dāng)∠A為鈍角時(shí),作出圖形,根據(jù)三角形內(nèi)角和定理進(jìn)行證明.
解:(1)∵AB=AC
∴∠B=∠ACB
∴
∵MN⊥AB,
∴∠MNB=90°,
∴∠NMB=90°-∠B=90°-70°=20°
(2)當(dāng)∠A=70°時(shí),如下圖所示,
∵AB=AC
∴∠B=∠ACB
∴
∵MN⊥AB,
∴∠MNB=90°,
∴∠NMB=90°-∠B=90°-55°=35°
(3)如圖,規(guī)律為:在等腰△ABC中,當(dāng)AB=AC,∠A是銳角時(shí),∠NMB的度數(shù)恰好為頂角∠A度數(shù)的一半,即∠NMB=∠A.
證明: ∵AB=AC
∴∠B=∠ACB
∴
∵MN⊥AB,
∴∠MNB=90°,
∴
即∠NMB的大小等于頂角∠A的一半.
當(dāng)∠A為鈍角時(shí),上述規(guī)律依然成立,故不需要修改. 完整地?cái)⑹錾鲜鲆?guī)律為:等腰三角形一腰上的垂直平分線與底邊或底邊的延長(zhǎng)線相交,所成的銳角等于頂角的一半.
證明:如圖,
∵AB=AC
∴∠B=∠ACB
∴
∵MN⊥AB,
∴∠MNB=90°,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,實(shí)線部分是由正方形,正五邊形和正六邊形疊放在一起形成的,其中正方形和正六邊形的邊長(zhǎng)相同,求圖中∠MON的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是在寫(xiě)字臺(tái)上放置一本攤開(kāi)的數(shù)學(xué)書(shū)和一個(gè)折疊式臺(tái)燈時(shí)的截面示意圖,已知攤開(kāi)的數(shù)學(xué)書(shū)AB長(zhǎng)20cm,臺(tái)燈上半節(jié)DE長(zhǎng)40cm,下半節(jié)DC長(zhǎng)50cm.當(dāng)臺(tái)燈燈泡E恰好在數(shù)學(xué)書(shū)AB的中點(diǎn)O的正上方時(shí),臺(tái)燈上、下半節(jié)的夾角即∠EDC=120°,下半節(jié)DC與寫(xiě)字臺(tái)FG的夾角即∠DCG=75°,求BC的長(zhǎng).(書(shū)的厚度和臺(tái)燈底座的寬度、高度都忽略不計(jì),F、A、O、B、C、G在同一條直線上.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王某月手機(jī)話(huà)費(fèi)中的各項(xiàng)費(fèi)用統(tǒng)計(jì)情況如圖表所示,請(qǐng)你根據(jù)圖表信息完成下列各題
項(xiàng)目 | 月功能費(fèi) | 基本話(huà)費(fèi) | 長(zhǎng)途話(huà)費(fèi) | 短信費(fèi) |
金額/元 | 4.8 | 48 |
|
|
(1)請(qǐng)將表格補(bǔ)充完整;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)扇形統(tǒng)計(jì)圖中,表示短信費(fèi)的扇形的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),△AOB和△APQ都是等邊三角形.
⑴求點(diǎn)B的坐標(biāo);
⑵試判斷直線AB與直線BQ的位置關(guān)系,并證明;
⑶連接OQ,當(dāng)OQ∥AB時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,延長(zhǎng)AC到E,C為線段AE上的一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,OC. 以下五個(gè)結(jié)論:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;結(jié)論正確的有_________(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,公交車(chē)行駛在筆直的公路上,這條路上有A,B,C,D四個(gè)站點(diǎn),每相鄰兩站之間的距離為5千米,從A站開(kāi)往D站的車(chē)稱(chēng)為上行車(chē),從D站開(kāi)往A站的車(chē)稱(chēng)為下行車(chē),第一班上行車(chē)、下行車(chē)分別從A站、D站同時(shí)發(fā)車(chē),相向而行,且以后上行車(chē)、下行車(chē)每隔10分鐘分別在A,D站同時(shí)發(fā)一班車(chē),乘客只能到站點(diǎn)上、下車(chē)(上、下車(chē)的時(shí)間忽略不計(jì)),上行車(chē)、下行車(chē)的速度均為30千米/小時(shí).
(1)問(wèn)第一班上行車(chē)到B站、第一班下行車(chē)到C站分別用時(shí)多少?
(2)若第一班上行車(chē)行駛時(shí)間為t小時(shí),第一班上行車(chē)與第一班下行車(chē)之間的距離為s千米,求s與t的函數(shù)關(guān)系式;
(3)一乘客前往A站辦事,他在B,C兩站間的P處(不含B,C站),剛好遇到上行車(chē),BP=x千米,此時(shí),接到通知,必須在35分鐘內(nèi)趕到,他可選擇走到B站或走到C站乘下行車(chē)前往A站.若乘客的步行速度是5千米/小時(shí),求x滿(mǎn)足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC中,∠BAC=90°,AB=AC,BM是AC邊的中線,作AD⊥BM,垂足為點(diǎn)E,交BC于點(diǎn)D,且AH平分∠BAC交BM于N,交BC于H,連接DM,則下列結(jié)論:①∠AMB=∠CMD②HN=HD③BN=AD④∠BNH=∠MDC⑤MC=DC中,正確的有( )個(gè)
A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com