【題目】已知:如圖,△ABC是等邊三角形,延長(zhǎng)AC到E,C為線段AE上的一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,OC. 以下五個(gè)結(jié)論:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;結(jié)論正確的有_________(把你認(rèn)為正確的序號(hào)都填上)
【答案】①③④⑤
【解析】
根據(jù)等邊三角形的三邊都相等,三個(gè)角都是60°,可以證明△ACD△BCE,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AD=BE,所以①正確;
由△ACD△BCE得∠CAD=∠CBE,加上∠BCA=∠DCE=60°,AC=BC,得到△ACP△BCQ(ASA),所以AP=BO,故②錯(cuò)誤;
根據(jù)△ACP△BCQ,再根據(jù)PC=QC,推出△PCQ是等邊三角形,又由∠ACB=∠CPQ,根據(jù)內(nèi)錯(cuò)角相等,兩直線平行,故③正確;
利用等邊三角形的性質(zhì),BC//DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故④正確;
根據(jù)三角形面積公式求出CN=CM,根據(jù)角平分線性質(zhì)即可判斷⑤.
①∵正三角形ABC和正三角形CDE,
∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD△BCE(SAS),
∴AD=BE;故①正確.
②∵△ACD△BCE(已證),
∴∠CAD=∠CBE,
∵∠BCA=∠DCE=60°(已證),
∴=60°,
∴∠ACB=∠BCQ=60°,
在△ACP和△BCQ中,
,
∴△ACP△BCQ(ASA),
∴AP=BO,
故②錯(cuò)誤.
③∵△ACP△BCQ(已證),
∴PC=QC,
∴△PCQ是等邊三角形.
∴∠CPQ=60°,
∴∠ACB=∠CPQ,
∴PQ//AE,
故③正確.
④∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
在正三角形CDE中,
∠DEC =60°=∠BCD,
∴ BC//DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.
故④正確.
⑤過(guò)C作于M,于N,
∵△ACD△BCE,
∴,BE=AD,
∴
∴CM=CN,
∴OC平分∠AOE,故⑤正確;
故答案為①③④⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB的垂直平分線EF交BC于點(diǎn)E,交AB于點(diǎn)F,D是線段CE的中點(diǎn),AD⊥BC于點(diǎn)D.若∠B=36°,BC=8,則AB的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為使中華傳統(tǒng)文化教育更具有實(shí)效性,軍寧中學(xué)開(kāi)展以“我最喜愛(ài)的傳統(tǒng)文化種類(lèi)”為主題的調(diào)查活動(dòng),圍繞“在詩(shī)詞、國(guó)畫(huà)、對(duì)聯(lián)、書(shū)法、戲曲五種傳統(tǒng)文化中,你最喜愛(ài)哪一種?(必選且只選一種)”的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)本次調(diào)查共抽取了多少名學(xué)生?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若軍寧中學(xué)共有960名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛(ài)國(guó)畫(huà)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于N,交BC的延長(zhǎng)線于M,∠A=40°.
⑴求∠NMB的大;
⑵若將圖中的∠A的度數(shù)改為70°,其余條件不變,則∠NMB= ;
⑶你發(fā)現(xiàn)有什么樣的規(guī)律?若將∠A改為鈍角,對(duì)這個(gè)問(wèn)題規(guī)律性的認(rèn)識(shí)是否需要加以修改?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),連接AE,求證:AF=AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時(shí),若AB=2,CE=2,求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生參加選課走板情況,學(xué)校研究小組隨機(jī)抽取若干人進(jìn)行調(diào)查分析,根據(jù)收集整理的數(shù)據(jù)繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,課程類(lèi)別代碼如下:
A:文學(xué)類(lèi)課程 B:益智類(lèi)課程 C:藝術(shù)類(lèi)課程
根據(jù)以上信息,解答下列問(wèn)題:
(1)該小組采用的調(diào)查方式是 ,被調(diào)查的樣本容量是 ;
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若全校有1280名學(xué)生,選擇藝術(shù)類(lèi)課程的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,點(diǎn)D在線段AC上,點(diǎn)E在線段BC的延長(zhǎng)線上.將△DCE繞點(diǎn)C旋轉(zhuǎn)60°得到△D′CE′(點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)D′,點(diǎn)E的對(duì)應(yīng)點(diǎn)為點(diǎn)E′),連接AD′、BE′,過(guò)點(diǎn)C作CN⊥BE′,垂足為N,直線CN交線段AD′于點(diǎn)M,則MN的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個(gè)條件為_______(只添加一個(gè)條件即可);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com