【題目】觀察猜想:(1)如圖①,在Rt△ABC中,∠BAC=90°,AB=AC=3,點D與點A重合,點E在邊BC上,連接DE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到線段DF,連接BF,BE與BF的位置關(guān)系是 ,BE+BF= ;
探究證明:(2)在(1)中,如果將點D沿AB方向移動,使AD=1,其余條件不變,如圖②,判斷BE與BF的位置關(guān)系,并求BE+BF的值,請寫出你的理由或計算過程;
拓展延伸:(3)如圖③,在△ABC中,AB=AC,∠BAC=a,點D在邊BA的延長線上,BD=n,連接DE,將線段DE繞著點D順時針旋轉(zhuǎn),旋轉(zhuǎn)角∠EDF=a,連接BF,則BE+BF的值是多少?請用含有n,a的式子直接寫出結(jié)論.
【答案】觀察猜想:(1)BF⊥BE,BC;探究證明:(2)BF⊥BE,BF+BE=,見解析;拓展延伸:(3)BF+BE=.
【解析】
(1)只要證明△BAF≌△CAE,即可解決問題;
(2)如圖②中,作DH∥AC交BC于H.利用(1)中結(jié)論即可解決問題;
(3)如圖③中,作DH∥AC交BC的延長線于H,作DM⊥BC于M.只要證明△BDF≌△HDE,可證BF+BE=BH,即可解決問題.
(1)如圖①中,
∵∠EAF=∠BAC=90°,
∴∠BAF=∠CAE,
∵AF=AE,AB=AC,
∴△BAF≌△CAE,
∴∠ABF=∠C,BF=CE,
∵AB=AC,∠BAC=90°,
∴∠ABC=∠C=45°,
∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,
故答案為BF⊥BE,BC;
(2)如圖②中,作DH∥AC交BC于H,
∵DH∥AC,
∴∠BDH=∠A=90°,△DBH是等腰直角三角形,
由(1)可知,BF⊥BE,BF+BE=BH,
∵AB=AC=3,AD=1,
∴BD=DH=2,
∴BH=2,
∴BF+BE=BH=2;
(3)如圖③中,作DH∥AC交BC的延長線于H,作DM⊥BC于M,
∵AC∥DH,
∴∠ACH=∠H,∠BDH=∠BAC=α,
∵AB=AC,
∴∠ABC=∠ACB
∴∠DBH=∠H,
∴DB=DH,
∵∠EDF=∠BDH=α,
∴∠BDF=∠HDE,
∵DF=DE,DB=DH,
∴△BDF≌△HDE,
∴BF=EH,
∴BF+BE=EH+BE=BH,
∵DB=DH,DM⊥BH,
∴BM=MH,∠BDM=∠HDM,
∴BM=MH=BDsin.
∴BF+BE=BH=2nsin.
科目:初中數(shù)學 來源: 題型:
【題目】有四張僅一面分別標有1,2,3,4的不透明紙片,除所標數(shù)字不同外,其余都完全相同.
(1)將四張紙片分成兩組,標有1、3的為第一組,標有2、4的為第二組,背面向上,放在桌上,從兩組中各隨機抽取一張,求兩次抽取數(shù)字和為5的概率;
(2)將四張紙片洗勻后背面向上,放在桌上,一次性從中隨機抽取兩張,用樹形圖法或列表法,求所抽取數(shù)字和為5的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解
利用旋轉(zhuǎn)變換解決數(shù)學問題是一種常用的方法.如圖1,點P是等邊三角形ABC內(nèi)一點,PA=1,PB=,PC=2.求∠BPC的度數(shù).
為利用已知條件,不妨把△BPC繞點C順時針旋轉(zhuǎn)60°得△AP′C,連接PP′,則PP′的長為_____;在△PAP′中,易證∠PAP′=90°,且∠PP′A的度數(shù)為_____,綜上可得∠BPC的度數(shù)為_____;
(2)類比遷移
如圖2,點P是等腰Rt△ABC內(nèi)的一點,∠ACB=90°,PA=2,PB=,PC=1,求∠APC的度數(shù);
(3)拓展應用
如圖3,在四邊形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,請直接寫出BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)嘗試探究
如圖1,等腰Rt△ABC的兩個頂點B,C在直線MN上,點D是直線MN上一個動點(點D在點C的右邊),BC=3,BD=m,在△ABC同側(cè)作等腰Rt△ADE,∠ABC=∠ADE=90°,EF⊥ MN于點F,連結(jié)CE.
①求DF的長;
②在判斷AC⊥CE是否成立時,小明同學發(fā)現(xiàn)可以由以下兩種思路解決此問題:
思路一:先證CF=EF,求出∠ECF=45°,從而證得結(jié)論成立.
思路二:先求DF,EF的長,再求CF的長,然后證AC2+CE2=AE2,從而證得結(jié)論成立.
請你任選一種思路,完整地書寫本小題的證明過程.(如用兩種方法作答,則以第一種方法評分)
(2)拓展探究
將(1)中的兩個等腰直角三角形都改為有一個角為的直角三角形,如圖2, ∠ABC=∠ADE=90°,∠BAC=∠DAE=30°,BC=3,BD=m,當4≤m≤6時,求CE長的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).
(1)當三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);
(3)若BC= 4,點M是邊AB的中點,連結(jié)DM,DM與AC交于點O,當三角板的一邊DF與邊DM重合時(如圖2),若OF=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,∠A=30°,點P從點A出發(fā)以2cm/s的速度沿折線A→C→B運動,點Q從點A出發(fā)以vcm/s的速度沿AB運動,P,Q兩點同時出發(fā),當某一點運動到點B時,兩點同時停止運動.設運動時間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1,C2兩段組成,如圖2所示,有下列結(jié)論:①v=1;②sinB=;③圖象C2段的函數(shù)表達式為y=﹣x2+x;④△APQ面積的最大值為8,其中正確有( 。
A.①②B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù)y=x+2的圖象與函數(shù)y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數(shù)y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為8.則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com