【題目】如圖,AB是⊙O的弦,點C為半徑OA的中點,過點C作CD⊥OA交弦AB于點E,連接BD,且DE=DB.
(1)判斷BD與⊙O的位置關系,并說明理由;
(2)若CD=15,BE=10,tanA=,求⊙O的直徑.
【答案】(1)BD是⊙O的切線,理由見解析;(2).
【解析】試題分析:(1)連接OB,由已知條件易證∠OBD=90°,即可證明BD是⊙O的切線;(2)過點D作DG⊥BE于G,根據等腰三角形的性質得到EG=BE=5,由兩角相等的三角形相似,△ACE∽△DGE,利用相似三角形對應角相等得到sin∠EDG=sinA=,在Rt△EDG中,利用勾股定理求出DG的長,根據三角形相似得到比例式,代入數據即可得到結果.
試題解析:(1)證明:連接OB,
∵OB=OA,DE=DB,
∴∠A=∠OBA,∠DEB=∠ABD,
又∵CD⊥OA,
∴∠A+∠AEC=∠A+∠DEB=90°,
∴∠OBA+∠ABD=90°,
∴OB⊥BD,
∴BD是⊙O的切線;
(2)如圖,過點D作DG⊥BE于G,
∵DE=DB,
∴EG=BE=5,
∵∠ACE=∠DGE=90°,∠AEC=∠GED,
∴∠GDE=∠A,
∴△ACE∽△DGE,
∴sin∠EDG=sinA==,即CE=13,
在Rt△ECG中,
∵DG==12,
∵CD=15,DE=13,
∴DE=2,
∵△ACE∽△DGE,
∴=,
∴AC=DG=,
∴⊙O的直徑2OA=4AD=.
科目:初中數學 來源: 題型:
【題目】化簡求值
(1)2x2﹣[x2﹣2(x2﹣3x﹣1)﹣3(x2﹣1﹣2x)],其中x=
(2)2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b),其中:a=3,b=2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,池塘邊有一塊長為20米,寬為12米的長方形土地,現在將其余三面留出寬都是x米的小路,中間余下的長方形部分做菜地,用代數式表示:
(1)菜地的長a=米,寬b=米;
(2)菜地的面積S=平方米;
(3)求當x=2米時,菜地的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地區(qū)住宅用電之電費計算規(guī)則如下:每月每戶不超過50度時,每度以4元收費;超過50度的部分,每度以5元收費,并規(guī)定用電按整數度計算(小數部份無條件舍去) .
(1)下表給出了今年3月份A,B兩用戶的部分用電數據,請將表格數據補充完整,
(2)若假定某月份C用戶比D用戶多繳電費38元,求C用戶該月可能繳的電費為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果點M在y軸的左側,且在x軸的上側,到兩坐標軸的距離都是1,則點M的坐標為( )
A.(﹣1,2)
B.(﹣1,﹣1)
C.(﹣1,1)
D.(1,1)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com