【題目】如圖在坐標系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2020次,點B的落點依次為B1,B2,B3,…,則B2020的坐標為_________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,則∠CMA的度數(shù)為( 。
A.30°B.35°C.70°D.45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自從開展“創(chuàng)建全國文明城區(qū)“工作以來,門頭溝區(qū)便掀起了“門頭溝熱心人“志愿服務(wù)的熱潮,區(qū)教委也號召各校學生積極參與到志愿服務(wù)當中.為了解甲、乙兩所學校學生一周志愿服務(wù)情況,從這兩所學校中各隨機抽取40名學生,分別對他們一周的志愿服務(wù)時長(單位:分鐘)數(shù)據(jù)進行收集、整理、描述和分析.下面給出了部分信息:
a.甲校40名學生一周的志愿服務(wù)時長的扇形統(tǒng)計圖如圖(數(shù)據(jù)分成6組:):
A: B:
C: D:
E: F:
b.甲校40名學生一周志愿服務(wù)時長在這一組的是:
60 60 62 63 65 68 70 72 73 75 75 76 80 80
c.甲、乙兩校各抽取的40名學生一周志愿服務(wù)時長的平均數(shù)、中位數(shù)、眾數(shù)如下:
學校 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲校 | 75 | 90 | |
乙校 | 75 | 76 | 85 |
根據(jù)以上信息,回答下列問題:
(1)_____________;
(2)根據(jù)上面的統(tǒng)計結(jié)果,你認為____①_____所學校學生志愿服務(wù)工作做得好(填“甲“或“乙“),理由______②________________________________________________________;
(3)甲校要求學生一周志愿服務(wù)的時長不少于60分鐘,如果甲校共有學生800人,請估計甲校學生中一周志愿服務(wù)時長符合要求的有_______人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點A(0,4),與x軸負半軸交于B,與正半軸交于點C(8,0),且∠BAC=90°.
(1)求該二次函數(shù)解析式;
(2)若N是線段BC上一動點,作NE∥AC,交AB于點E,連結(jié)AN,當△ANE面積最大時,求點N的坐標;
(3)若點P為x軸上方的拋物線上的一個動點,連接PA、PC,設(shè)所得△PAC的面積為S.問:是否存在一個S的值,使得相應的點P有且只有2個?若有,求出這個S的值,并求此時點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線y1=與直線y2=的圖象交于A、B兩點.已知點A的坐標為(4,1),點P(a,b)是雙曲線y1=上的任意一點,且0<a<4.
(1)分別求出y1、y2的函數(shù)表達式;
(2)連接PA、PB,得到△PAB,若4a=b,求三角形ABP的面積;
(3)當點P在雙曲線y1=上運動時,設(shè)PB交x軸于點E,延長PA交x軸于點F,判斷PE與PF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:如圖1和2,四邊形中,已知,,點,分別在、上,.
(1)①如圖 1,若、都是直角,把繞點逆時針旋轉(zhuǎn)至,使與重合,則能證得,請寫出推理過程;
②如圖 2,若、都不是直角,則當與滿足數(shù)量關(guān)系_______時,仍有;
(2)拓展:如圖3,在中,,,點、均在邊上,且.若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.為了解全國中學生視力的情況,應采用普查的方式
B.某種彩票中獎的概率是,買1000張這種彩票一定會中獎
C.從2000名學生中隨機抽取200名學生進行調(diào)查,樣本容量為200名學生
D.從只裝有白球和綠球的袋中任意摸出一個球,摸出黑球是確定事件
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,ΔECG是等腰直角三角形,∠BGE的平分線過點D交BE 于H,O是EG的中點,對于下面四個結(jié)論:①GH⊥BE;②OH∥BG,且;③;④△EBG的外接圓圓心和它的內(nèi)切圓圓心都在直線HG上.其中表述正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C,D在⊙O上,弦AD的延長線與弦BC的延長線相交于點E.用①AB是⊙O的直徑,②CB=CE,③AB=AE中的兩個作為題設(shè),余下的一個作為結(jié)論組成一個命題,則組成真命題的個數(shù)為( 。
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com