【題目】如圖,矩形ABCD,AD6,AB8,點PBC邊上的中點,點Q是△ACD的內(nèi)切圓圓O上的一個動點,點MCQ的中點,則PM的最大值是( 。

A.1B.+1C.3.2D.3

【答案】B

【解析】

由矩形的性質(zhì)得出∠D90°,CDAB8,由勾股定理得出AC10,設(shè)△AD的內(nèi)切圓O的半徑為r,則×10r+×8r+×6r×8×6,解得r2,連接BQ,易證PM是△BCQ的中位線,得出PMBQ,當BQ經(jīng)過圓心O時,BQ最長,則此時PM最長,作OEADE,OFABF,則BFABAF6,OFAEADDE4,由勾股定理得出BO,則BQBO+OQ,即可得出結(jié)果.

∵四邊形ABCD是矩形,

∴∠D90°,CDAB8,

AC10,

設(shè)△AD的內(nèi)切圓O的半徑為r,

×10r+×8r+×6r×8×6,

解得:r2,

連接BQ,

PBC邊上的中點,點MCQ的中點,

PM是△BCQ的中位線,

PMBQ,

BQ經(jīng)過圓心O時,BQ最長,則此時PM最長,

OEADE,OFABF,

BFABAF826,OFAEADDE624,

BO

BQBO+OQ

PMBQ.

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點,A點的坐標為,B點的坐標為,連接,過B軸,垂足為C

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)在射線上是否存在一點D,使得是直角三角形,求出所有可能的D點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yax2+bx+c的圖象如圖所示,那么一次函數(shù)ybx+b24ac與反比例函數(shù)y在同一坐標系內(nèi)的圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC6cm.P、QBC邊上兩個動點(Q在點P右邊),PQ2cm,點P從點C出發(fā),沿CB向右運動,運動時間為t.5s后點Q到達點B,點P、Q停止運動,過點QQDBCAB于點D,連接AP,設(shè)ACPBQD的面積和為S(cm),St的函數(shù)圖像如圖2所示.

(1)1BC cm,點P運動的速度為 cm/s;

(2)t為何值時,面積和S最小,并求出最小值;

(3)連接PD,以點P為圓心線段PD的長為半徑作⊙P,當⊙P的邊相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90o,以BC為直徑的半圓⊙OAC于點D,點EAB的中點,連接DE并延長,交CB延長線于點F.

(1)判斷直線DF與⊙O的位置關(guān)系,并說明理由;

(2)CF8,DF4,求⊙O的半徑和AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九(1)班數(shù)學興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點D、E、F、G,∠CGD42°,將直尺向下平移,使直尺的邊緣通過點B,交AC于點H,如圖②所示.

1)∠CBH的大小為   度.

2)點H、B的讀數(shù)分別為4、13.4,求BC的長.(結(jié)果精確到0.01

(參考數(shù)據(jù):sin42°0.67,cos42°0.74,tan42°0.90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點,ABx軸于B,且SABO=

(1)直接寫出這兩個函數(shù)的關(guān)系式;

(2)求△AOC的面積;

(3)根據(jù)圖象直接寫出:當x為何值時,反比例函數(shù)的值小于一次函數(shù)的值.

查看答案和解析>>

同步練習冊答案