【題目】如圖,長(zhǎng)方形中,,,長(zhǎng)方形內(nèi)有一個(gè)點(diǎn),連結(jié),,,已知,,延長(zhǎng)交于點(diǎn),則_____________.
【答案】
【解析】
延長(zhǎng)AP交CD于F,根據(jù)已知條件得到∠CPF+∠CPB=90°,根據(jù)矩形的性質(zhì)得到∠DAB=∠ABC=90°,BC=AD=3,根據(jù)余角的性質(zhì)得到∠EAP=∠ABP,推出AE=PE,根據(jù)勾股定理即可得到結(jié)論.
延長(zhǎng)AP交CD于F,
∵∠APB=90°,
∴∠FPB=90°,
∴∠CPF+∠CPB=90°,
∵四邊形ABCD是矩形,
∴∠DAB=∠ABC=90°,BC=AD=3,
∴∠EAP+∠BAP=∠ABP+∠BAP=90°,
∴∠EAP=∠ABP,
∵CP=CB=3,
∴∠CPB=∠CBP,
∴∠CPF=∠ABP=∠EAP,
∵∠EPA=∠CPF,
∴∠EAP=∠APE,
∴AE=PE,
∵CD2+DE2=CE2,
∴42+(3-AE)2=(3+AE)2,
解得AE=.
故.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,正方形ABCD的邊AB在x軸上,A(﹣4,0),B(﹣2,0),定義:若某個(gè)拋物線上存在一點(diǎn)P,使得點(diǎn)P到正方形ABCD四個(gè)頂點(diǎn)的距離相等,則稱這個(gè)拋物線為正方形ABCD的“友好拋物線”.若拋物線y=2x2﹣nx﹣n2﹣1是正方形ABCD的“友好拋物線”,則n的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運(yùn)動(dòng),到點(diǎn)C停止運(yùn)動(dòng).過(guò)點(diǎn)E作 EF∥BD,EF與邊AD(或邊CD)交于點(diǎn)F,EF的長(zhǎng)度y(cm)與點(diǎn)E的運(yùn)動(dòng)時(shí)間x(秒)的函數(shù)圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E為正方形ABCD內(nèi)一點(diǎn),點(diǎn)F在CD邊上,且∠BEF=90°,EF=2BE.點(diǎn)G為EF的中點(diǎn),點(diǎn)H為DG的中點(diǎn),連接EH并延長(zhǎng)到點(diǎn)P,使得PH=EH,連接DP.
(1)依題意補(bǔ)全圖形;
(2)求證:DP=BE;
(3)連接EC,CP,猜想線段EC和CP的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是的中點(diǎn).過(guò)點(diǎn)D作CB的垂線,分別交CB、CA延長(zhǎng)線于點(diǎn)F、E.
(1)判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD=BE,∠D=∠E,∠ABC=∠DBE=90°,BF⊥AE,且點(diǎn)A,C,E在同一條直線上.
(1)求證:△DAB≌△ECB;
(2)若AD=3,AF=1,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D在邊BC上,點(diǎn)E在邊AC上,且AD=AE.
(1)如圖1,當(dāng)AD是邊BC上的高,且∠BAD=30°時(shí),求∠EDC的度數(shù);
(2)如圖2,當(dāng)AD不是邊BC上的高時(shí),請(qǐng)判斷∠BAD與∠EDC之間的關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為3的正方形ABCD中,點(diǎn)E、F、G、H分別在AB、BC、CD、DA邊上,且滿足EB=FC=GD=HA=1,BD分別與HG、HF、EF相交于M、O、N給出以下結(jié)論:
①HO=OF;②OF2=ONOB;③HM=2MG;④S△HOM=,其中正確的個(gè)數(shù)有( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全民讀書(shū)月活動(dòng)中,某校隨機(jī)抽樣調(diào)查了一部分學(xué)生本學(xué)期計(jì)劃購(gòu)買(mǎi)課外書(shū)的費(fèi)用情況,根據(jù)圖中的相關(guān)信息,解答下面問(wèn)題;
(1)這次調(diào)查獲取的樣本容量是 ;
(2)由統(tǒng)計(jì)圖可知,這次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ;中位數(shù)是 ;
(3)求這次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù);
(4)若該校共有1000名學(xué)生,根據(jù)樣本數(shù)據(jù),估計(jì)該校本學(xué)期計(jì)劃購(gòu)買(mǎi)課外書(shū)的總花費(fèi).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com