【題目】如圖,中,,于,平分,且于,與相交于點,于,交于,下列結論:①;②;③;④.其中正確的是( )
A.①②B.①③C.①②③D.①②③④
【答案】C
【解析】
根據(jù)∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,從而得出DF=AD,BF=AC.則CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因為BF=AC所以CE=AC=BF;連接CG.因為△BCD是等腰直角三角形,即BD=CD.又因為DH⊥BC,那么DH垂直平分BC.即BG=CG;在Rt△CEG中,CG是斜邊,CE是直角邊,所以CE<CG.即AE<BG.
∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD.故①正確;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC;DF=AD.
∵CD=CF+DF,
∴AD+CF=BD;故②正確;
在Rt△BEA和Rt△BEC中
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AE=AC.
又由(1),知BF=AC,
∴CE=AC=BF;故③正確;
連接CG.
∵△BCD是等腰直角三角形,
∴BD=CD
又DH⊥BC,
∴DH垂直平分BC.∴BG=CG
在Rt△CEG中,
∵CG是斜邊,CE是直角邊,
∴CE<CG.
∵CE=AE,
∴AE<BG.故④錯誤.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】某電信公司手機的通訊卡有,兩種業(yè)務類型:類卡收費標準是:不管通話時間多長,每部手機每月必須繳月租費12元,另外,通話費按0.2元/分鐘計;類卡收費標準是:沒有月租,但通話費按0.25元/分鐘計.如圖所示,是每月應繳費用(元)與通話時間(分鐘)之間的函數(shù)圖象.下列結論:
①圖中是類卡的收費方式所表示的函數(shù)圖象;
②若李海本月的通話時間為180分鐘,則他選擇類卡省錢;
③若本月李海預繳了100元的話費,則他選擇類卡劃算;
④若類卡比類卡的話費多10元,則類卡和類卡的通話時間都是40分鐘或類卡比類卡的通話時間多40分鐘且類卡和類卡的通話時間分別為240分鐘和200分鐘.其中正確的結論有( )
A.①②③④B.②③④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)求P點的坐標(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達式,并求出面積S的最大值及相應的x值;
(3)設四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關系并說明理由;
(4)當x為何值時,△NPC是一個等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,∠A=140°,∠D=80°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,對于一個圖形,通過2種不同的方法計算它的面積時,可以得到一個數(shù)學等式.例如圖①可以得到,請解答下列問題:
(1)寫出圖②中所表示的等式: ;
(2)利用(1)中所得到的結論,解決下面的問題:已知,,求的值;
(3)小明同學用2張邊長為的正方形紙片、3張邊長為的正方形紙片,5張邊長分別為的長方形紙片拼出了一個長方形,那么該長方形較長一邊的長為多少?
(4)小明同學又用張邊長為的正方形紙片,張邊長為的正方形紙片、張邊長分別為的長方形紙片拼出了一個面積為的長方形,請問一共用掉多少張紙片?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,是邊上的中線,是的中點,過點作的平行線與的延長線相交于點,連接.
(1)求證:四邊形為平行四邊形;
(2)若,請寫出圖中所有與線段相等的線段(線段除外).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A.B在反比例函數(shù)y=的圖象上,且點A,B的橫坐標分別為a,2a(a<0),若S△AOB=3,則k的值為( )
A.5B.-5C.4D.-4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com