【題目】如圖已知AB∥CD,P為直線AB,CD外一點(diǎn),BF平分∠ABP,DE平分∠CDP,BF的反向延長線交DE于點(diǎn)E.
(1)∠ABP,∠P和∠PDC的數(shù)量關(guān)系為 ;
(2)若∠BPD=80°,求∠BED的度數(shù);
(3)∠P與∠E的數(shù)量關(guān)系為 .
【答案】(1)∠ABP=∠P+∠ADC;(2)∠BED=140°;(3)∠BED+P=180°.
【解析】
(1)延長AB交PD于G,根據(jù)平行線的性質(zhì)得到∠PGA=∠PDC,根據(jù)三角形的外角的性質(zhì)即可得到結(jié)論;
(2)延長FE交CD于H,根據(jù)平行線的性質(zhì)和角平分線的定義即可得到結(jié)論;
(3)根據(jù)平行線的性質(zhì)和角平分線的定義即可得到結(jié)論.
解:(1)延長AB交PD于G,
∵AG∥CD,
∴∠PGA=∠PDC,
∵∠ABP=∠P+∠AGP,
∴∠ABP=∠P+∠ADC,
故答案為:∠ABP=∠P+∠ADC;
(2)延長FE交CD于H,
∵AB∥CD,
∴∠ABF=∠CHB,
∵BF平分∠ABP,DE平分∠CDP,
∴∠ABF=∠CHB=ABP,∠HDE=PDC,
∵∠ABP=∠P+∠ADC,
∴∠CHE=(∠P+∠PDC)=40°+∠HDE,
∵∠CHE=∠HDE+∠DEH,
∴∠DEH=40°,
∴∠BED=180°﹣∠DEH=140°;
(3)由(2)知,∠CHE=(∠P+∠PDC)=P+∠HDE,
∵∠CHE=∠DEH+∠HDE,
∴∠DEH=∠P,
∴∠BED=180°﹣∠P.
∴∠BED+P=180°.
故答案為:∠BED+P=180°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),直線y=﹣x﹣1與拋物線交于A,C兩點(diǎn),其中點(diǎn)C的橫坐標(biāo)為2.
(1)求二次函數(shù)的解析式;
(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線交拋物線于點(diǎn)E,求線段PE長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD交于點(diǎn)F、G,
AF與BG交于點(diǎn)E.
(1)求證:AF⊥BG,DF=CG;
(2)若AB=10,AD=6,AF=8,求FG和BG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=30°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△DEC,點(diǎn)A的對應(yīng)點(diǎn)D恰好落在線段CB的延長線上,連接AD,若∠ADE=90°,則∠BAD=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中A(2,﹣1),B(4,3),C(1,2)
(1)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A′B′C′,ABC的對應(yīng)點(diǎn)分別為A′B′C′,畫出△A′B′C′,并寫出A′B′C′的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織七、八年級全體同學(xué)參觀八路軍太行紀(jì)念館(位于山西省長治市武鄉(xiāng)縣城).七年級租用45座大巴車輛,55座大巴車輛;八年級租用30座中巴車輛,55座大巴車輛.當(dāng)每輛車恰好坐滿時(shí):
(1)用含有,的代數(shù)式分別表示七、八年級各有學(xué)生數(shù).
(2)用含有,的代數(shù)式表示七、八年級共有多少學(xué)生?
(3)當(dāng),時(shí),該學(xué)校七、八年級共有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.
()請直接寫出袋子中白球的個(gè)數(shù).
()隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
①-3,9,-27,81,-243,729,…;
②0,12,-24,84,-240,732,…;
③-1,3,-9,27,-81,243,….
(1)第①行數(shù)有什么規(guī)律?
(2)第②行數(shù)與第①行數(shù)有什么關(guān)系?
(3)第③行數(shù)與第①行數(shù)有什么關(guān)系?
(4)取每行數(shù)的第10個(gè)數(shù),計(jì)算這三個(gè)數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為災(zāi)區(qū)開展了“獻(xiàn)出我們的愛”賑災(zāi)捐款活動(dòng),九年級(1)班50名同學(xué)積極參加了這次賑災(zāi)捐款活動(dòng),因不慎,表中數(shù)據(jù)有一處被墨水污染,已無法看清,但已知全班平均每人捐款38元.
捐款(元) | 10 | 15 | 30 | 50 | 60 | |
人數(shù) | 3 | 6 | 11 | 11 | 13 | 6 |
(1)根據(jù)以上信息可知,被污染處的數(shù)據(jù)為 .
(2)該班捐款金額的眾數(shù)為 ,中位數(shù)為 .
(3)如果用九年級(1)班捐款情況作為一個(gè)樣本,請估計(jì)全校2000人中捐款在40元以上(包括40元)的人數(shù)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com