【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左則,點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線下方的拋物線上一動點(diǎn).
求這個(gè)二次函數(shù)的表達(dá)式;
求出四邊形的面積最大時(shí)的點(diǎn)坐標(biāo)和四邊形的最大面積;
連結(jié)、,在同一平面內(nèi)把沿軸翻折,得到四邊形,是否存在點(diǎn),使四邊形為菱形?若存在,請求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請說明理由;
在直線找一點(diǎn),使得為等腰三角形,請直接寫出點(diǎn)坐標(biāo).
【答案】(1);(2)當(dāng)時(shí),四邊形的面積取最大值,最大值為;(3)存在點(diǎn),使四邊形為菱形;(4)點(diǎn)坐標(biāo)為、、或.
【解析】
(1)直接代入B、C兩點(diǎn)坐標(biāo)即可求解解析式;
(2)過作軸,交于,設(shè),求解直線BC解析式為,則可得,觀察圖形,利用即可求解;
(3)取的中點(diǎn),過作的垂線交拋物線于,在的延長線上取,連接、,所得四邊形即為菱形;
(4)設(shè)點(diǎn)的坐標(biāo)為,則利用已知點(diǎn)C和O,寫出用m表示的OC、PC、PO的表達(dá)式,再分別按、和三種情況進(jìn)行討論,分別求解m的值即可.
解:將點(diǎn)、代入中,
得:,解得:,
∴該二次函數(shù)的表達(dá)式為.
∵點(diǎn),點(diǎn),
∴直線.
過作軸,交于,如圖所示.
設(shè),則點(diǎn),
當(dāng)時(shí),,
解得:,,
∴點(diǎn).
則,
,
,
,
∵,,
∴當(dāng)時(shí),四邊形的面積取最大值,最大值為.
取的中點(diǎn),過作的垂線交拋物線于,在的延長線上取,連接、,如圖所示.
∵,,,
∴四邊形為菱形.
當(dāng),則有,
解得:(舍去),,
∴存在點(diǎn),使四邊形為菱形.
設(shè)點(diǎn)的坐標(biāo)為,
∵,,
∴,,.
為等腰三角形分三種情況:
①當(dāng)時(shí),,
解得:,
此時(shí)點(diǎn)的坐標(biāo)為或;
②當(dāng)時(shí),,
解得:或(舍去),
此時(shí)點(diǎn)的坐標(biāo)為;
③當(dāng)時(shí),有,
解得:,
此時(shí)點(diǎn)的坐標(biāo)為.
綜上可知:點(diǎn)坐標(biāo)為、、或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價(jià)格購進(jìn)800件T恤,第一個(gè)月以單價(jià)80元銷售,售出了200件;第二個(gè)月如果單價(jià)不變,預(yù)計(jì)仍可售出200件,批發(fā)商為增加銷售量,決定降價(jià)銷售,根據(jù)市場調(diào)查,單價(jià)每降低1元,可多售出10件,但最低單價(jià)應(yīng)高于購進(jìn)的價(jià)格;第二個(gè)月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價(jià)為40元,設(shè)第二個(gè)月單價(jià)降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個(gè)月的單價(jià)應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(3m-6,m+1),試分別根據(jù)下列條件,求出點(diǎn)P的坐標(biāo).
(1)點(diǎn)P的橫坐標(biāo)比縱坐標(biāo)大1;
(2)點(diǎn)P在過點(diǎn)A(3,-2),且與x軸平行的直線上;
(3)點(diǎn)P到y軸的距離是到x軸距離的2倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AC=8,△ABC的面積為20,∠BAC的平分線交BC于點(diǎn)D,M,N分別是AD和AB上的動點(diǎn),則BM+MN的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,點(diǎn)E在△ABC外一點(diǎn),CE⊥AE于點(diǎn)E,CE=BC.
(1)作出△ABC的角平分線AD.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡.)
(2)求證:∠ACE=∠B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,AD⊥BC,垂足為D,∠B=60°,∠C=45°
(1)求∠BAC的度數(shù);
(2)若BD=2,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某港口有一燈塔,燈塔的正東有、兩燈塔,以為直徑的半圓區(qū)域內(nèi)有若干暗礁,海里,一船在處測得燈塔、分別在船的
南偏西和南偏西方向,船沿方向行駛海里恰好處在燈塔的正北方向處.
求的長(精確到海里);
若船繼續(xù)沿方向朝行駛,是否有觸礁的危險(xiǎn)?
(參考數(shù)值:,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于某地供水管爆裂.該地供水部門組織工人進(jìn)行搶修.供水部門距離搶修工地15千米.搶修車裝載著所需材料先從供水部門出發(fā),15分鐘后,工人乘吉普車從同一地點(diǎn)出發(fā),結(jié)果他們同時(shí)到達(dá)搶修工地.已知吉普車速度是搶修車速度的1.5倍,求這兩種車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB、AC的垂直平分線分別交BC于點(diǎn)E、F.若△AEF的周長為12cm,則BC的長為____________________cm.若∠EAF=110°,則∠BAC=_____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com