【題目】如圖,某港口有一燈塔,燈塔的正東有、兩燈塔,以為直徑的半圓區(qū)域內(nèi)有若干暗礁,海里,一船在處測(cè)得燈塔、分別在船的

南偏西和南偏西方向,船沿方向行駛海里恰好處在燈塔的正北方向處.

的長(zhǎng)(精確到海里);

若船繼續(xù)沿方向朝行駛,是否有觸礁的危險(xiǎn)?

(參考數(shù)值:,,,

【答案】(1)1.64(2)沒有觸礁的危險(xiǎn)

【解析】

(1)設(shè)BC的中點(diǎn)是O,作ND⊥CM,OE⊥AM.在直角△NDM中利用∠NMC的三角函數(shù)求出ND的長(zhǎng),在直角△NCD中利用三角函數(shù)求出CN的長(zhǎng)即可.(2)計(jì)算出OE的長(zhǎng),然后比較與9海里的大小關(guān)系就可以確定是否有危險(xiǎn)

設(shè)的中點(diǎn)為,作,垂足分別為、

在直角中,(海里),

在直角中,海里.

在直角中,海里,

(海里),

(海里),

,

所以船繼續(xù)沿方向朝行駛,沒有觸礁的危險(xiǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)過程中,對(duì)教材中的一個(gè)有趣問題做如下探究:

(習(xí)題回顧)已知:如圖1,在ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點(diǎn)F.求證:∠CFE=CEF;

(變式思考)如圖2,在ABC中,∠ACB=90°,CDAB邊上的高,若ABC的外角∠BAG的平分線交CD的延長(zhǎng)線于點(diǎn)F,其反向延長(zhǎng)線與BC邊的延長(zhǎng)線交于點(diǎn)E,則∠CFE與∠CEF還相等嗎?說明理由;

(探究廷伸)如圖3,在ABC中,在AB上存在一點(diǎn)D,使得∠ACD=B,角平分線AECD于點(diǎn)FABC的外角∠BAG的平分線所在直線MNBC的延長(zhǎng)線交于點(diǎn)M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=x+2的圖象與y軸交于點(diǎn)A,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)B(0,4)且與x軸及y=x+2的圖象分別交于點(diǎn)C、D,點(diǎn)D的坐標(biāo)為(,n)

(1)n= ,k= ,b=_______

(2)若函數(shù)y=kx+b的函數(shù)值大于函數(shù)y=x+2的函數(shù)值,x的取值范圍是_______

(3)求四邊形AOCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左則,點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).

求這個(gè)二次函數(shù)的表達(dá)式;

求出四邊形的面積最大時(shí)的點(diǎn)坐標(biāo)和四邊形的最大面積;

連結(jié)、,在同一平面內(nèi)把沿軸翻折,得到四邊形,是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;

在直線找一點(diǎn),使得為等腰三角形,請(qǐng)直接寫出點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC中,D、E分別是AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF =BC,連接DE、CD、EF

1)求證:四邊形DCFE是平行四邊形;

2)若等邊三角形ABC的邊長(zhǎng)為a,寫出求EF長(zhǎng)的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,埃航客機(jī)失事后,國(guó)家主席親自發(fā)電進(jìn)行慰問,埃及政府出動(dòng)了多艘艦船和飛機(jī)進(jìn)行搜救,其中一艘潛艇在海面下米的點(diǎn)處測(cè)得俯角為的前下方海底有黑匣子信號(hào)發(fā)出,繼續(xù)沿原方向直線航行米后到達(dá)點(diǎn),在處測(cè)得俯角為的前下方海底有黑匣子信號(hào)發(fā)出,求海底黑匣子點(diǎn)距離海面的深度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,B,C,E在同一條直線上,連結(jié)DC.

(1)求證:ABE≌△ACD;

(2)求證:DCBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的交點(diǎn)為,與軸的交點(diǎn)分別為,且,直線軸,在軸上有一動(dòng)點(diǎn)過點(diǎn)作平行于軸的直線與拋物線、直線的交點(diǎn)分別為、

求拋物線的解析式;

當(dāng)時(shí),求面積的最大值;

當(dāng)時(shí),是否存在點(diǎn),使以、、為頂點(diǎn)的三角形與相似?若存在,求出此時(shí)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=m1x+3的圖像與x軸的負(fù)半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且△OAB面積為.

1)求m的值及點(diǎn)A的坐標(biāo);

2)過點(diǎn)B作直線BPx軸的正半軸相交于點(diǎn)P,且OP=2OA,求直線BP的函數(shù)表達(dá)式 .

查看答案和解析>>

同步練習(xí)冊(cè)答案