【題目】小明在學習過程中,對教材中的一個有趣問題做如下探究:

(習題回顧)已知:如圖1,在ABC中,∠ACB=90°,AE是角平分線,CD是高,AECD相交于點F.求證:∠CFE=CEF;

(變式思考)如圖2,在ABC中,∠ACB=90°,CDAB邊上的高,若ABC的外角∠BAG的平分線交CD的延長線于點F,其反向延長線與BC邊的延長線交于點E,則∠CFE與∠CEF還相等嗎?說明理由;

(探究廷伸)如圖3,在ABC中,在AB上存在一點D,使得∠ACD=B,角平分線AECD于點FABC的外角∠BAG的平分線所在直線MNBC的延長線交于點M.試判斷∠M與∠CFE的數(shù)量關系,并說明理由.

【答案】1)證明見解析;(2)∠CEF=CFE,證明見解析;(3)∠M+CFE=90°,證明見解析.

【解析】

[習題回顧]根據(jù)三角形的外角的性質證明;

[變式思考]根據(jù)角平分線的定義、直角三角形的性質解答;

[探究廷伸】同(1)、(2)的方法相同.

[習題回顧]證明:∵∠ACB=90°,CD是高,

∴∠B+CAB=90°,∠ACD+CAB=90°

∴∠B=ACD,

AE是角平分線,

∴∠CAF=DAF

∵∠CFE=CAF+ACDCEF=DAF+B,

∴∠CEF=CFE

[變式思考]CEF=CFE

證明:∵AF為∠BAG的角平分線,

∴∠GAF=DAF

CDAB邊上的高,

∴∠ACB=90°,

∴∠ADF=ACE=90°,

又∵∠CAE=GAF,

∴∠CEF=CFE

[探究思考]M+CFE=90°,

證明:∵CA、G三點共線 , AE、AN為角平分線,

∴∠EAN=90°

∴∠M+CEF=90°,

∵∠CEF=EAB+B,∠CFE=EAC+ACD,∠ACD=B,

∴∠CEF=CFE,

∴∠M+CFE=90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為宣傳66日世界海洋日,某校九年級舉行了主題為珍惜海洋資源,保護海洋生物多樣性的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).表1知識競賽成績分組統(tǒng)計表

組別

分數(shù)/

頻數(shù)

10

14

18

請根據(jù)圖表信息解答以下問題:

1)本次調查一共隨機抽取了________個參賽學生的成績,表1________;

2)所抽取的參賽學生的成績的中位數(shù)落在的組別________;

3)請你估計,該校九年級競賽成績達到80分以上(含80分)的學生約多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將直角三角形ABC沿AB方向平移得到直角三角形DEF,已知BE=3,BE=3,FG=1,AC=5,則圖中陰影部分的面積為(

A.10B.13.5C.20D.9.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC=1,∠C=90°,E、FAB上的動點,且∠ECF=45°,分別過E、FBC、AC的垂線,垂足分別為H、G,兩垂線交于點M

1)當點E與點B重合時,請直接寫出MHAC的數(shù)量關系 ;

2)探索AF、EFBE之間的數(shù)量關系,并證明你的結論;

3)以C為坐標原點,以BC所在的直線為x軸,建立直角坐標系,請畫出坐標系并利用(2)中的結論證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+1經過點(2,6),且與直線y=x+1相交于A,B兩點,點A在y軸上,過點B作BC⊥x軸,垂足為點C(4,0).

(1)求拋物線的解析式;

(2)若P是直線AB上方該拋物線上的一個動點,過點P作PD⊥x軸于點D,交AB于點E,求線段PE的最大值;

(3)在(2)的條件,設PC與AB相交于點Q,當線段PC與BE相互平分時,請求出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD,AB=6,點E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF,下列結論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結論是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習了統(tǒng)計知識后,小剛就本班同學的三種上學方式進行了一次全面調查,每位同 學選擇其中一種方式,圖①和圖②是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計 圖:

請你根據(jù)以上信息解答下列問題:

1)該班共有多少名學生?

2)在扇形圖中,騎車上學的人數(shù)占全班總人數(shù)的百分比是多少?

3)在條形圖中,將表示步行上學方式的部分補充完整;

4)如果全年級共 500 名學生,請你估計全年級步行上學的學生有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校某社團為了調查同學們上學時所使用交通工具的情況,隨機抽取了部分同學進行調查,要求調查者從“:公交車”“:家庭汽車”“:地鐵”“:自行車”“:其他”五個選項中選擇最常用的一項,將所有調查結果整理后繪制成如圖所示的不完整條形統(tǒng)計圖和扇形統(tǒng)計圖,請結合統(tǒng)計圖解答下列問題:

1)表示組的扇形統(tǒng)計圖所對應的圓心角是________度,補全條形統(tǒng)計圖;

2)若社團想從組的甲、乙,丙、丁四人中隨機選擇兩人,了解他們使用的電動車品牌情況,請用列表或畫樹狀圖的方法求出恰好選中乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【發(fā)現(xiàn)證明】

如圖1,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數(shù)量關系.

小聰把ABE繞點A逆時針旋轉90°ADG,通過證明AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD

【類比引申】

1)如圖2,點E、F分別在正方形ABCD的邊CBCD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EFBE、DF之間的數(shù)量關系,并證明;

【聯(lián)想拓展】

2)如圖3,如圖,∠BAC=90°,AB=AC,點EF在邊BC上,且∠EAF=45°,若BE=3EF=5,求CF的長.

查看答案和解析>>

同步練習冊答案