【題目】如圖,菱形ABCD中,∠BAD=60°,AC與BD交于點(diǎn)O,E為CD延長(zhǎng)線上的一點(diǎn),且CD=DE,連結(jié)BE分別交AC,AD于點(diǎn)F、G,連結(jié)OG,則下列結(jié)論:①OG=AB;②與△EGD全等的三角形共有5個(gè);③S四邊形ODGF>S△ABF;④由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形.其中正確的是( )
A.①④B.①③④C.①②③D.②③④
【答案】A
【解析】
由AAS證明△ABG≌△DEG,得出AG=DG,證出OG是△ACD的中位線,得出OG=CD=AB,①正確;先證明四邊形ABDE是平行四邊形,證出△ABD、△BCD是等邊三角形,得出AB=BD=AD,因此OD=AG,得出四邊形ABDE是菱形,④正確;由菱形的性質(zhì)得得出△ABG≌△BDG≌△DEG,由SAS證明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正確;證出OG是△ABD的中位線,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性質(zhì)和面積關(guān)系得出S四邊形ODGF=S△ABF;③不正確;即可得出結(jié)果.
∵四邊形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ACD的中位線,
∴OG=CD=AB,
∴①正確;
∵AB∥CE,AB=DE,
∴四邊形ABDE是平行四邊形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等邊三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四邊形ABDE是菱形,
④正確;
∴AD⊥BE,
由菱形的性質(zhì)得:△ABG≌△BDG≌△DEG,
在△ABG和△DCO中,
,
∴△ABG≌△DCO(SAS),
∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,
∴②不正確;
∵OB=OD,AG=DG,
∴OG是△ABD的中位線,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∴△GOD的面積=△ABD的面積,△ABF的面積=△OGF的面積的4倍,AF:OF=2:1,
∴△AFG的面積=△OGF的面積的2倍,
又∵△GOD的面積=△AOG的面積=△BOG的面積,
∴S四邊形ODGF=S△ABF;
③不正確;
正確的是①④.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動(dòng)點(diǎn),且AE=CF,當(dāng)BF+CE取得最小值時(shí),∠AFB=( 。
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長(zhǎng)為3,∠A=60°,點(diǎn)M是AD邊上一點(diǎn),且DM=AD,點(diǎn)N是折線AB﹣BC上的一個(gè)動(dòng)點(diǎn).
(1)如圖1,當(dāng)N在BC邊上,且MN過(guò)對(duì)角線AC與BD的交點(diǎn)時(shí),則線段AN的長(zhǎng)度為 .
(2)當(dāng)點(diǎn)N在AB邊上時(shí),將△AMN沿MN翻折得到△A′MN,如圖2,
①若點(diǎn)A′落在AB邊上,則線段AN的長(zhǎng)度為 ;
②當(dāng)點(diǎn)A′落在對(duì)角線AC上時(shí),如圖3,求證:四邊形AM A′N(xiāo)是菱形;
③當(dāng)點(diǎn)A′落在對(duì)角線BD上時(shí),如圖4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形ABC中,,,D是AB的中點(diǎn),E、F分別是AC、BC上的點(diǎn)(點(diǎn)E不與端點(diǎn)A、C重合),連接EF并取EF的中點(diǎn)O,連接DO并延長(zhǎng)至點(diǎn)G,使,連接DE、GE、GF.
(1)求證:四邊形EDFG是平行四邊形;
(2)若,探究四邊形EDFG的形狀?
(3)在(2)的條件下,當(dāng)E點(diǎn)在何處時(shí),四邊形EDFG的面積最小,并求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明對(duì)某市出租汽車(chē)的計(jì)費(fèi)問(wèn)題進(jìn)行研究,他搜集了一些資料,部分信息如下:
收費(fèi)項(xiàng)目 | 收費(fèi)標(biāo)準(zhǔn) |
3公里以?xún)?nèi)收費(fèi) | 13元 |
基本單價(jià) | 2.3元/公里 |
…… | …… |
備注:出租車(chē)計(jì)價(jià)段里程精確到500米;出租汽車(chē)收費(fèi)結(jié)算以元為單位,元以下四舍五入。
小明首先簡(jiǎn)化模型,從簡(jiǎn)單情形開(kāi)始研究:①只考慮白天正常行駛(無(wú)低速和等候);②行駛路程3公里以上時(shí),計(jì)價(jià)器每500米計(jì)價(jià)1次,且每1公里中前500米計(jì)價(jià)1.2元,后500米計(jì)價(jià)1.1元.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
記一次運(yùn)營(yíng)出租車(chē)行駛的里程數(shù)為(單位:公里),相應(yīng)的實(shí)付車(chē)費(fèi)為(單位:元).
(1)下表是y隨x的變化情況
行駛里程數(shù)x | 0 | 0<x<3.5 | 3.5≤x<4 | 4≤x<4.5 | 4.5≤x<5 | 5≤x<5.5 | … |
實(shí)付車(chē)費(fèi)y | 0 | 13 | 14 | 15 | … |
(2)在平面直角坐標(biāo)系中,畫(huà)出當(dāng)時(shí)隨變化的函數(shù)圖象;
(3)一次運(yùn)營(yíng)行駛公里()的平均單價(jià)記為(單位:元/公里),其中.
①當(dāng)和時(shí),平均單價(jià)依次為,則的大小關(guān)系是____________;(用“<”連接)
②若一次運(yùn)營(yíng)行駛公里的平均單價(jià)不大于行駛?cè)我?/span>()公里的平均單價(jià),則稱(chēng)這次行駛的里程數(shù)為幸運(yùn)里程數(shù).請(qǐng)?jiān)谏蠄D中軸上表示出(不包括端點(diǎn))之間的幸運(yùn)里程數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明所在教學(xué)樓的每層高度為3.5 m,為了測(cè)量旗桿MN的高度,他在教學(xué)樓一樓的窗臺(tái)A處測(cè)得旗桿頂部M的仰角為45°,他在二樓窗臺(tái)B處測(cè)得M的仰角為31°,已知每層樓的窗臺(tái)離該層的地面高度均為1 m.
(1)AB=________m;
(2)求旗桿MN的高度.(結(jié)果保留兩位小數(shù))
(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與的圖象交點(diǎn)的橫坐標(biāo)為3,則下列結(jié)論:
①;②;③當(dāng)時(shí),中,正確結(jié)論的個(gè)數(shù)是 ( )
A.0B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為等邊三角形,點(diǎn)D、E分別在BC,AC上,AE=CD,AD交BE于點(diǎn)P,于Q,.
(1)求證:;
(2)若,,求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com