菱形ABCD中,已知AC=6,BD=8,則此菱形的周長為( 。
A.5B.10C.20D.40
根據(jù)題意,設(shè)對(duì)角線AC、BD相交于O.則AC⊥BD.
則由菱形對(duì)角線性質(zhì)知,AO=
1
2
AC=3,BO=
1
2
BD=4.
所以,在直角△ABO中,由勾股定理得AB=
AO2+BO2
=
32+42
=5.
則此菱形的周長是4AB=20.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD兩鄰邊分別為3,4,點(diǎn)P是矩形一邊上任意一點(diǎn),則點(diǎn)P到兩條對(duì)角線AC、BD的距離之和PE+PF為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等邊三角形ABC中,BC=6cm.射線AGBC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)填空:
①當(dāng)t為______s時(shí),四邊形ACFE是菱形;
②當(dāng)t為______s時(shí),以A、F、C、E為頂點(diǎn)的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四邊形ABCD是由四個(gè)邊長為l的正六邊形所圍住,則四邊形ABCD的面積是(  )
A.
3
4
B.
3
2
C.1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD中,AB=4,E為BC中點(diǎn),AE⊥BC,AF⊥CD于點(diǎn)F,CGAE,CG交AF于點(diǎn)H,交AD于點(diǎn)G.
(1)求菱形ABCD的面積;
(2)求∠CHA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,CD是Rt△ABC斜邊AB上的高,AF為角平分線,AF交BC于F,交CD于E,過E作EGAB,與BC交于G,過F向AB作垂線,垂足為H.
求證:(1)CF=BG;
(2)四邊形CEHF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在菱形ABCD中,AB=5,∠BCD=120°,則對(duì)角線AC等于( 。
A.20B.15C.10D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.
(1)說明四邊形ACEF是平行四邊形;
(2)當(dāng)∠B滿足什么條件時(shí),四邊形ACEF是菱形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①ADBE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案