【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線(xiàn)互相垂直,垂足為D,直線(xiàn)DC與AB的延長(zhǎng)線(xiàn)相交于P.弦CE平分∠ACB,交直徑AB于點(diǎn)F,連結(jié)BE.
(1)求證:AC平分∠DAB;
(2)探究線(xiàn)段PC,PF之間的大小關(guān)系,并加以證明;
(3)若tan∠PCB=,BE=,求PF的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)PC=PF.證明見(jiàn)解析;(3).
【解析】試題分析:(1)、連接OC,根據(jù)切線(xiàn)的性質(zhì)得出∠OCP=∠D=90°即 OC∥AD,然后根據(jù)OA=OC得出∠CAD=∠OCA=∠OAC,從而得出角平分線(xiàn);(2)、根據(jù)∠PCB+∠ACD=∠CAD+∠ACD=90°,從而得出∠CAB=∠CAD=∠PCB,結(jié)合∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE得出∠PFC=∠PCF,從而得出答案;(3)、連接AE,根據(jù)題意得出△PCB和△PAC相似,然后設(shè)PB=3x,則PC=4x,根據(jù)Rt△POC的勾股定理得出x的值,從而得出答案.
試題解析:(1)連接OC. ∵OA=OC,∴∠OAC=∠OCA.
∵PC是⊙O的切線(xiàn),AD⊥CD, ∴∠OCP=∠D=90°, ∴ OC∥AD.
∴ ∠CAD=∠OCA=∠OAC.即AC平分∠DAB.
(2)PC=PF.
證明:∵AB是直徑, ∴∠ACB=90°,∴∠PCB+∠ACD=90° 又∵∠CAD+∠ACD=90°,
∴∠CAB=∠CAD=∠PCB.
又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE. ∴∠PFC=∠PCF.
∴PC=PF.
(3)連接AE. ∵∠ACE=∠BCE,∴=, ∴AE=BE.
又∵AB是直徑, ∴∠AEB=90°.AB=, ∴OB=OC=5.
∵∠PCB=∠PAC,∠P=∠P, ∴△PCB∽△PAC. ∴.
∵tan∠PCB=tan∠CAB=, ∴=.
設(shè)PB=3x,則PC=4x,在Rt△POC中,(3x+5)2=(4x)2+52,
解得x1=0,. ∵x>0,∴, ∴PF=PC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)在第一象限,為等邊三角形,,垂足為點(diǎn).,垂足為.
(1)求OF的長(zhǎng);
(2)作點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),連交于E,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn),且此拋物線(xiàn)的頂點(diǎn)坐標(biāo)為.
求此拋物線(xiàn)的解析式;
設(shè)點(diǎn)D為已知拋物線(xiàn)對(duì)稱(chēng)軸上的任意一點(diǎn),當(dāng)與面積相等時(shí),求點(diǎn)D的坐標(biāo);
點(diǎn)P在線(xiàn)段AM上,當(dāng)PC與y軸垂直時(shí),過(guò)點(diǎn)P作x軸的垂線(xiàn),垂足為E,將沿直線(xiàn)CE翻折,使點(diǎn)P的對(duì)應(yīng)點(diǎn)與P、E、C處在同一平面內(nèi),請(qǐng)求出點(diǎn)坐標(biāo),并判斷點(diǎn)是否在該拋物線(xiàn)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)的《朗讀者》節(jié)目激發(fā)了同學(xué)們的讀書(shū)熱情,為了引導(dǎo)學(xué)生“多讀書(shū),讀好書(shū)”,某校對(duì)八年級(jí)部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本數(shù)量少的有本,最多的有本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如下所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
合計(jì) |
()統(tǒng)計(jì)圖表中的__________,__________,__________.
()請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整.
()求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù).
()若該校八年級(jí)共有名學(xué)生,請(qǐng)你估計(jì)該校八年級(jí)學(xué)生課外閱讀本及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(-3,4).
(1)求b的值;
(2)過(guò)點(diǎn)A作軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)B,在直線(xiàn)AB上任取一點(diǎn)P,作點(diǎn)A關(guān)于直線(xiàn)OP的對(duì)稱(chēng)點(diǎn)C;
①當(dāng)點(diǎn)C恰巧落在軸時(shí),求直線(xiàn)OP的表達(dá)式;
②連結(jié)BC,求BC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,.
(1)如圖①,以點(diǎn)為直角頂點(diǎn),為腰在右側(cè)作等腰,過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn).求證:.
(2)如圖②,以為底邊在左側(cè)作等腰,連接,求的度數(shù).
(3)如圖③,中,,垂足為點(diǎn),以為邊在左側(cè)作等邊,連接交于,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,若AB∥CD,求∠B+∠D+∠E1的度數(shù)?
(2)如圖②,若AB∥CD,求∠B+∠D+∠E1+∠E2的度數(shù)?
(3)如圖③,若AB∥CD,求∠B+∠D+∠E1+∠E2+∠E3的度數(shù)?
(4)如圖④,若AB∥CD,猜想∠B+∠D+∠E1+∠E2+…+∠En的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,平分.
(1)若為線(xiàn)段上的一個(gè)點(diǎn),過(guò)點(diǎn)作交線(xiàn)段的延長(zhǎng)線(xiàn)于點(diǎn)
①若,,則 ;
②猜想與、之間的數(shù)量關(guān)系,并給出證明.
(2)若在線(xiàn)段的延長(zhǎng)線(xiàn)上,過(guò)點(diǎn)作交直線(xiàn)于點(diǎn).請(qǐng)你做出示意圖,直接寫(xiě)出與、的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com