【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中.
(1)以圖中的點(diǎn)O為位似中心,在網(wǎng)格中畫出△ABC的位似圖形△A1B1C1 , 使△A1B1C1與△ABC的位似比為2:1;
(2)若△A1B1C1的面積為S,則△ABC的面積是

【答案】
(1)解:如圖所示:△A1B1C1,即為所求


(2) S
【解析】解:(2)∵△A1B1C1與△ABC的位似比為2:1,△A1B1C1的面積為S, ∴△ABC的面積是: S.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解作圖-位似變換的相關(guān)知識(shí),掌握對(duì)應(yīng)點(diǎn)到位似中心的距離比就是位似比,對(duì)應(yīng)線段的比等于位似比,位似比也有順序;已知圖形的位似圖形有兩個(gè),在位似中心的兩側(cè)各有一個(gè).位似中心,位似比是它的兩要素.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y= 的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出不等式kx+b< 時(shí)x的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點(diǎn)P從A出發(fā),沿AB以4cm/s的速度向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿CA以3cm/s的速度向A點(diǎn)運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x(s).
(1)當(dāng)x為何值時(shí),PQ∥BC;
(2)當(dāng)△APQ與△CQB相似時(shí),AP的長(zhǎng)為
(3)當(dāng)SBCQ:SABC=1:3,求SAPQ:SABQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料: “懷山俊秀,柔水有情”﹣懷柔,一直受到世人的青睞.早在上世紀(jì)90年代,聯(lián)合國第4屆世界婦女大會(huì)NGO論壇的舉辦使懷柔蜚聲海內(nèi)外,此后,隨著世界養(yǎng)生大會(huì)、國際青少年嘉年華、全國汽車?yán)惖纫幌盗谢顒?dòng)賽事的成功舉辦,為這座國際交往新城聚集了龐大的人氣.2014年11月11日,全世界的眼光再次聚焦在北京懷柔雁棲湖,這里成功舉辦了第22次APEC領(lǐng)導(dǎo)人峰會(huì).現(xiàn)如今懷柔已成為以自然風(fēng)光游為基礎(chǔ),休閑度假游、鄉(xiāng)村美食游、滿族風(fēng)情游為特色,影視文化游、健身養(yǎng)生游、競(jìng)技賽事游為時(shí)尚的多元化旅游勝地.
隨著懷柔旅游業(yè)的迅速發(fā)展,也帶動(dòng)了懷柔的經(jīng)濟(jì)收入.據(jù)統(tǒng)計(jì),2011年全年接待游客1047萬人次,比上一年增長(zhǎng)5.3%;2012年全年接待游客1085萬人次,比上一年增長(zhǎng)3.7%; 2013年全年接待游客1107.6萬人次,比上一年增長(zhǎng)2%; 2014年全年接待游客1135萬人次,比上一年增長(zhǎng)2.4%;2015年全年接待游客1297.4萬人次,比上一年增長(zhǎng)14.3%.(以上數(shù)據(jù)來源于懷柔信息網(wǎng))根據(jù)以上材料解答下列問題:
(1)用折線圖將2011﹣2015年懷柔區(qū)全年接待游客量表示出來,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)繪制的折線圖中提供的信息,預(yù)估 2016年懷柔區(qū)全年接待游覽客量約萬人次,你的預(yù)估理由是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,點(diǎn)E在邊AD上,∠ABE=45°,BE=DE,連接BD,點(diǎn)P在線段DE上,過點(diǎn)P作PQ∥BD交BE于點(diǎn)Q,連接QD.設(shè)PD=x,△PQD的面積為y,則能表示y與x函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,E,F(xiàn)分別是AC,BC邊上一點(diǎn).
(1)求證: ;
(2)若CE= AC,BF= BC,求∠EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|﹣2|+2sin30°﹣(﹣ 2+(tan45°)1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l與x軸相交于點(diǎn)M(3,0),與y軸相交于點(diǎn)N(0,﹣1),反比例函數(shù)y= (x>0)的圖象經(jīng)過線段MN的中點(diǎn)A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y= (x>0)的圖象上取不同于點(diǎn)A的一點(diǎn)B,作BC⊥x軸于點(diǎn)C,連接OB交直線l于點(diǎn)P,若△ONP的面積是△OBC的面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案