【題目】先化簡,再求值:

閱讀材料,大數(shù)學家高斯在上學讀書時曾經(jīng)研究過這樣一個問題:1+2+3++100=?經(jīng)過研究,這個問題的一般性結論是1+2+3++,其中n是正整數(shù)。現(xiàn)在我們來研究一個類似的問題:1×2+2×3+=?

觀察下面三個特殊的等式

將這三個等式的兩邊相加,可以得到1×2+2×3+3×4

讀完這段材料,請你思考后回答:(只需寫出結果,不必寫中間的過程)

(1)     

(2)1×22×33×4n×(n+1)=      

(3)       

【答案】1343400;(2nn+1)(n+2);(3nn+1)(n+2)(n+3).

【解析】

1)根據(jù)三個特殊等式相加的結果,代入熟記進行計算即可求解;

2)先對特殊等式進行整理,從而找出規(guī)律,然后把每一個算式都寫成兩個兩個算式的運算形式,整理即可得解;

3)根據(jù)(2)的求解規(guī)律,利用特殊等式的計算方法,先把每一個算式分解成兩個算式的運算形式,整理即可得解.

因為1×2+2×3+3×43×4×5=20,即1×2+2×3+3×43×(3+1)×(3+2=20,故:

1)原式100×(100+1)×(100+2100×101×102=343400;

2)原式nn+1)(n+2);

3)∵1×2×3=[1×2×3×40×1×2×3],2×3×4=[2×3×4×51×2×3×4],...,nn+1)(n+2= [nn+1)(n+2)(n+3)﹣nn1)(n+1)(n+2]

∴原式=[1×2×3×40×1×2×3]+ [2×3×4×51×2×3×4]+...+ [nn+1)(n+2)(n+3)﹣nn1)(n+1)(n+2]=nn+1)(n+2)(n+3).

故答案為:343400;nn+1)(n+2);nn+1)(n+2)(n+3).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算(1 2

3 4

5 6

7 8

9 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一次函數(shù),下列結論錯誤的是( )

A.函數(shù)的圖象與軸的交點坐標是

B.函數(shù)值隨自變量的增大而減小

C.函數(shù)的圖象不經(jīng)過第三象限

D.函數(shù)的圖象向下平移個單位長度得到的圖象

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,測量人員在山腳A處測得山頂B的仰角為45°,沿著仰角為30°的山坡前進1000米到達D處,在D處測得山頂B的仰角為60°,求山的高度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料并完成任務:

中國古代三國時期吳國的數(shù)學家趙爽最早對勾股定理作出理論證明.他創(chuàng)制了一幅勾股圓方圖”(如圖l),用數(shù)形結合的方法,給出了勾股定理的詳細證明.在這幅勾股圓方圖中,以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的那個小正方形組成的.每個直角三角形的面積為;中間的小正方形邊長為,面積為.于是便得到式子:.趙爽的這個證明可謂別具匠心,極富創(chuàng)新意識.他用幾何圖形的截、割、拼、補來證明代數(shù)式之間的恒等關系,既具嚴密性,又具直觀性,為中國古代以形證數(shù)、形數(shù)統(tǒng)一、代數(shù)和幾何緊密結合、互不可分的獨特風格樹立了一個典范.如圖2,是趙爽弦圖,其中、、是四個全等的直角三角形,四邊形都是正方形,根據(jù)這個圖形的面積關系,可以證明勾股定理.,,,取,.

任務:

(1)填空:正方形的面積為______,四個直角三角形的面積和為______;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:我們學習等邊三角形時得到直角三角形的一個性質:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在RtABC中,∠ACB=90°,ABC=30°,則:AC=AB.

探究結論:小明同學對以上結論作了進一步研究.

(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結論:①△ACE為等邊三角形;②BECE之間的數(shù)量關系為  

(2)如圖2,點D是邊CB上任意一點,連接AD,作等邊ADE,且點E在∠ACB的內(nèi)部,連接BE.試探究線段BEDE之間的數(shù)量關系,寫出你的猜想并加以證明.

(3)當點D為邊CB延長線上任意一點時,在(2)條件的基礎上,線段BEDE之間存在怎樣的數(shù)量關系?請直接寫出你的結論  

拓展應用:如圖3,在平面直角坐標系xOy中,點A的坐標為(﹣,1),點Bx軸正半軸上的一動點,以AB為邊作等邊ABC,當C點在第一象限內(nèi),且B(2,0)時,求C點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數(shù)是單獨租用甲種車輛完成任務天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B在數(shù)軸上分別表示有理數(shù)a、bA、B兩點之間的距離表示為|AB|,利用數(shù)形結合思想回答下列問題:

1)數(shù)軸上表示﹣31兩點之間的距離是   ;

2)數(shù)軸上表示x和﹣2的兩點之間的距離表示為   ;

3)若x表示一個有理數(shù),且-3x1,則|x1|+|x+3|的最小值是   ;

4)若x表示一個有理數(shù),且|x1|+|x+3|>4,則有理數(shù)x的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形與矩形如圖放置,點共線,共線,連接,取的中點,連接,若,則

A. B. C. 2D.

查看答案和解析>>

同步練習冊答案