【題目】將下面的解答過程補充完整:如圖,點上,點上,.試說明:

解:∵ (已知)

(等量代換)

_____________

(已知)

【答案】對頂角相等;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;等量代換;內錯角相等,兩直線平行

【解析】

由已知條件結合對頂角相等求得,從而根據(jù)同位角相等,兩直線平行的判定方法證得BD CE,然后根據(jù)兩直線平行,同位角相等的性質求得,從而求得∠D=ABD,然后內錯角相等,兩直線平行的判定方法即可解決問題;

解:∵ (已知)

(對頂角相等)

(等量代換)

BD CE(同位角相等,兩直線平行)

(兩直線平行,同位角相等)

(已知)

(等量代換)

(內錯角相等,兩直線平行)

故答案為:對頂角相等;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;等量代換;內錯角相等,兩直線平行

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC為等邊三角形,點D為直線BC上一動點(點D不與點B,點C重合)。以AD為邊作等邊三角形ADE,連接CE。

(1)如圖(1),當點D在邊BC上時。

①求證:△ABD≌△ACE

②直接判斷結論BC=DC+CE是否成立(不需證明);

(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,請寫出BCDC,CE之間存在的數(shù)量關系,并寫出證明過程。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若干個半徑為1的單位長度,圓心角為60°的扇形組成一條連續(xù)的曲線,點P從原點O出發(fā),向右沿這條曲線做上下起伏運動(如圖),點P在直線上運動的速度為每秒1個單位長度,點P在弧線上運動的速度為每秒 個單位長度,則2017秒時,點P的坐標是( )

A.( ,
B.( ,﹣
C.(2017,
D.(2017,﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,添加以下條件,不能判定的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市推出電腦上網包月制,每月收取費用y(元)與上網時間x(小時)的函數(shù)關系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當x30,求y與x之間的函數(shù)關系式;

(2)若小李4月份上網20小時,他應付多少元的上網費用?

(3)若小李5月份上網費用為75元,則他在該月份的上網時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程ax2﹣3x+3=0有兩個不等實根,則a的取值范圍是( )
A.a< 且a≠0
B.a>﹣ 且a≠0
C.a>﹣
D.a<

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知OBOC∠AOD內部的兩條射線,OM平分∠AOB,ON平分∠COD

1)若∠BOC=25°∠MOB=15°,∠NOD=10°,求∠AOD的大;

2)若∠AOD=75°∠MON=55°,求∠BOC的大小;

3)若∠AOD=α∠MON=β,求∠BOC的大小(用含α,β的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABCD的對角線AC,BD交于點O,ACAB,AB2,且AOBO23.

(1)求AC的長;(2)求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(8,0),點B的坐標為(6,4),點C的坐標為(0,4),點P從原點O出發(fā),以每秒3的單位長度的速度沿x軸向右運動,點Q從點B出發(fā),以每秒1的單位長度的速度沿線段BC向左運動,P,Q兩點同時出發(fā),當點Q運動到點C時,P,Q兩點停止運動,設運動時間為t(秒).

1)當t=   時,四邊形OPQC為矩形;

2)當t=   時,線段PQ平分四邊形OABC的面積;

3)在整個運動過程中,當以ACPQ為頂點的四邊形為平行四邊形時,求該平行四邊形的面積.

查看答案和解析>>

同步練習冊答案