【題目】在直角坐標(biāo)系中,函數(shù)y=(x>0,k為常數(shù))的圖象經(jīng)過A(4,1),點(diǎn)B(a,b)(0<a<4)是雙曲線上的一動(dòng)點(diǎn),過AACy軸于C,點(diǎn)D是坐標(biāo)系中的另一點(diǎn).若以A.B.C.D為頂點(diǎn)的平行四邊形的面積為12,那么對角線長度的最大值為_____

【答案】

【解析】

先求出雙曲線的解析式,以A.B.C.D為頂點(diǎn)的平行四邊形有兩種情況,分別畫圖計(jì)算比較對角線長度,求出最大值.

x=4,y=1

k=4,則y=

BBFACF

當(dāng)平行四邊形ABCD面積為12時(shí),BF·AC=12

BF=3,b=4

y=4代入y=x=1,則B(1,4)

設(shè)BDACP,PC=AP=2,CF=PF=1

=+=10,

BP=,BD=2BP=2>AC=4,

當(dāng)四邊形AD1BC面積為12時(shí)過D1

D1MCAM,D1M=BF=3

CF=AM=1,CD12=52+32=34,

CD1=>AB=.

當(dāng)平行四邊形ABD2C的面積為12時(shí),

D2D2NACN,CN=AF=3,

D2N= BF=3, AN=7

AD22=72+32=58

AD2=>BC=

>2>

對角線長度的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,且ABC60°,DABC內(nèi)一點(diǎn) ,且DADBEABC外一點(diǎn),BEAB,且EBDCBD,連DE,CE. 下列結(jié)論:①DACDBC;②BEAC ;③DEB30°. 其中正確的是(

A....B.①③...C. ...D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點(diǎn) B﹣1,0),C2,3),拋物線與y軸的焦點(diǎn)A,與x軸的另一個(gè)焦點(diǎn)為D,點(diǎn)M為線段AD上的一動(dòng)點(diǎn),設(shè)點(diǎn)M的橫坐標(biāo)為t

1)求拋物線的表達(dá)式;

2)過點(diǎn)My軸的平行線,交拋物線于點(diǎn)P,設(shè)線段PM的長為1,當(dāng)t為何值時(shí),1的長最大,并求最大值;(先根據(jù)題目畫圖,再計(jì)算)

3)在(2)的條件下,當(dāng)t為何值時(shí),△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點(diǎn)P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過點(diǎn)B作⊙O的切線BD,與CA的延長線交于點(diǎn)D,與半徑AO的延長線交于點(diǎn)E,過點(diǎn)A作⊙O的切線AF,與直徑BC的延長線交于點(diǎn)F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長;

(3)連接EF,求證:EF是⊙O的切線.

【答案】(1) 見解析; (2)3 ;(3)見解析.

【解析】試題分析:(1)根據(jù)圓周角定理得到BAC=90°,根據(jù)三角形的內(nèi)角和得到ACB=60°根據(jù)切線的性質(zhì)得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;

(2)根據(jù)SAOC=,得到SACF=,通過ACF∽△DAE,求得SDAE=,過AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;

(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,過OOGEFG,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.

試題解析:(1)證明:BCO的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切線,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,過AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=;

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切線.

型】解答
結(jié)束】
25

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.

(1)填空:點(diǎn)B的坐標(biāo)為   

(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請求出AD的長度;若不存在,請說明理由;

(3)①求證:;

②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線lyx1x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、正方形A3B3C3C2、、正方形AnBnnCn1,使得點(diǎn)A1、A2、A3在直線l上,點(diǎn)C1C2、C3y軸正半軸上,則A2018A2019B2018的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為.將點(diǎn)繞著原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到點(diǎn),延長到點(diǎn),使;再將點(diǎn)繞著原點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到點(diǎn),延長到點(diǎn),使;…如此繼續(xù)下去.

求:(1)點(diǎn)的坐標(biāo);(2)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一塊長方形紙片ABCD沿BD翻折后,點(diǎn)CE重合,若∠ADB30°,EH2cm,則BC的長度為( 。cm

A.8B.7C.6D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角坐標(biāo)系中一條圓弧經(jīng)過正方形網(wǎng)格的格點(diǎn)、、.若點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

圓弧所在圓的圓心點(diǎn)的坐標(biāo)為________

點(diǎn)是否在經(jīng)過點(diǎn)、、三點(diǎn)的拋物線上;

的條件下,求證:直線的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)(1,0),(0,).

(1)求該拋物線的函數(shù)表達(dá)式;

(2)將拋物線y=﹣x2+bx+c平移,使其頂點(diǎn)恰好落在原點(diǎn),請寫出一種平移的方法及平移后的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案