【題目】(1)問題發(fā)現(xiàn)

如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:

AEB的度數(shù)為______;

線段AD,BE之間的數(shù)量關(guān)系為______

(2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點(diǎn)AD,E在同一直線上,CM為△DCEDE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AEBE之間的數(shù)量關(guān)系,并說明理由.

【答案】結(jié)論:(160;(2AD=BE;應(yīng)用:∠AEB90°;AE=2CM+BE

【解析】

試題探究:(1)通過證明△CDA≌△CEB,得到∠CEB=∠CDA=120°,又∠CED=60°,∴∠AEB=120°60°= 60°

2)已證△CDA≌△CEB,根據(jù)全等三角形的性質(zhì)可得AD=BE;

應(yīng)用:通過證明△ACD≌△BCE,得到AD = BE,∠BEC = ∠ADC=135°,所以∠AEB =∠BEC∠CED =135°45°= 90°;根據(jù)等腰直角三角形的性質(zhì)可得DE = 2CM,所以AE = DE+AD=2CM+BE

試題解析:解:探究:(1)在△CDA≌△CEB中,

AC=BC,∠ACD=∠BCE,CD=CE,

∴△CDA≌△CEB

∴∠CEB=∠CDA=120°,

∠CED=60°,

∴∠AEB=120°60°= 60°

2∵△CDA≌△CEB,

∴AD=BE

應(yīng)用:∠AEB90°;AE=2CM+BE;

理由:∵△ACB△DCE均為等腰直角三角形,∠ACB =∠DCE= 90°

∴AC = BC, CD = CE, ∠ACB =∠DCB =∠DCE∠DCB, 即∠ACD = ∠BCE,

∴△ACD≌△BCE,

∴AD = BE∠BEC = ∠ADC=135°

∴∠AEB =∠BEC∠CED =135°45°= 90°

在等腰直角三角形DCE中,CM為斜邊DE上的高,

∴CM =" DM" = ME,∴DE = 2CM

∴AE = DE+AD=2CM+BE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】父親兩次將100斤糧食分給兄弟倆,第一次分給哥哥的糧食等于第二次分給弟弟的2倍,第二次分給哥哥的糧食是第一次分給弟弟的3倍,求兩次分糧食中,哥哥、弟弟各分到多少糧食?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,點(diǎn)邊上一點(diǎn),連接BD,點(diǎn)上一點(diǎn),連接,,過點(diǎn),垂足為,交于點(diǎn)

(1)求證:;

(2)如圖2,若,點(diǎn)的中點(diǎn),求證:;

(3)(2)的條件下,如圖3,若,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,ADCD,垂足為D,AD交⊙O 于E,連接CE.(1)求證:CD 是⊙O 的切線

(2)若E是弧AC的中點(diǎn),⊙O 的半徑為1,求圖中陰影部分的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳。經(jīng)過測(cè)試:同時(shí)開放1個(gè)大餐廳和2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供2280名學(xué)生就餐。

(1)1個(gè)大餐廳和1個(gè)小餐廳分別可供多少名學(xué)生就餐?

(2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在離水面高度為5m的岸上有人用繩子拉船靠岸,開始繩子與水面的夾角為30°,此人以每秒0.5m的速度收繩.

(1)8秒后船向岸邊移動(dòng)了多少米?

(2)寫出還沒收的繩子的長(zhǎng)度S米與收繩時(shí)間t秒的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y=ax2+bx+c的圖象如圖所示,其對(duì)稱軸為直線x=-1,與x軸的一個(gè)交點(diǎn)為(1,0),與y軸的交點(diǎn)在(0,2)與(03)之間(不包含端點(diǎn)),有如下結(jié)論:①.2a+b=0 . 3a+2c0 a+5b+2c0-1<a<-,則結(jié)論正確的有_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D△ABC的邊AC上,要判斷△ADB△ABC相似,添加一個(gè)條件,不正確的是(

A.∠ABD=∠CB.∠ADB=∠ABCC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知∠A=F,∠C=D,試說明:BDCE

解:∵∠A=F(已知)

ACDF(______)

∴∠D=1(______)

又∵∠C=D(已知)

∴∠1=______

BDCE(______)

查看答案和解析>>

同步練習(xí)冊(cè)答案