【題目】如圖,AB是⊙O的直徑,PO⊥AB,PE是⊙O的切線,交AB的延長(zhǎng)線于點(diǎn)C,切點(diǎn)為E,AE交PO于點(diǎn)F.
(1)求證:PEF是等腰三角形;
(2)在圖中,作EH⊥AB,垂足為H,作弦BD∥PC,交EH于點(diǎn)G.若EG=5,sinC=,求直徑AB的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)直徑AB的長(zhǎng)為20m
【解析】
(1)由切線性質(zhì)得:OE⊥PC,根據(jù)垂直定義和三角形定理可得:∠AEP=∠PFE,根據(jù)等角對(duì)等邊可得結(jié)論;
(2)先根據(jù)sinC==,設(shè)OH=3x,OE=5x,則EH=4x,OA=OB=5x,由平行線性質(zhì)得:∠GBH=∠C,
列式為:
=,解方程可得結(jié)論.
(1)證明:∵PE為⊙O的切線,
∴OE⊥PC,
∴∠OEP=90°,
∴∠OEA+∠AEP=90°,
∵OP⊥AC,
∴∠AOF=90°,
∴∠A+∠AFO=90°,
∵∠AFO=∠PFE,
∴∠PFE+∠A=90°,
∵OA=OE,
∴∠A=∠OEA,
∴∠AEP=∠PFE,
∴PE=PF;
∴△PEF是等腰三角形;
(2)解:∵∠C+∠COE=90°,∠COE+∠OEH=90°,
∴∠C=∠OEH,
∵sin∠C==sin∠OEH=,
設(shè)OH=3x,OE=5x,則EH=4x,OA=OB=5x,
∴BH=OB﹣OH=2x,GH=4x﹣5,
∵BG∥PC,
∴∠GBH=∠C,
∵sin∠C=,
∴tan∠C==tan∠GBH,
∴,x=2,
∴AB=10x=20,
答:直徑AB的長(zhǎng)為20m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2,以D(﹣2,1)為直角頂點(diǎn)作該拋物線的內(nèi)接Rt△ADB(即A.D.B均在拋物線上).直線AB必經(jīng)過(guò)一定點(diǎn),則該定點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】冬至是一年中太陽(yáng)光照射最少的日子,如果此時(shí)樓房最低層能采到陽(yáng)光,一年四季整座樓均能受到陽(yáng)光照射,所以冬至是選房買(mǎi)房時(shí)確定陽(yáng)光照射的最好時(shí)機(jī).吳江某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱牵摼用駱堑囊粯鞘歉邽?/span>米的小區(qū)超市,超市以上是居民住房,現(xiàn)計(jì)劃在該樓前面米處蓋一棟新樓,已知吳江地區(qū)冬至正午的陽(yáng)光與水平線夾角大約為.(參考數(shù)據(jù)在,)
中午時(shí),若要使得超市采光不受影響,則新樓的高度不能超過(guò)多少米?(結(jié)果保留整數(shù))
若新建的大樓高米,則中午時(shí),超市以上的居民住房采光是否受影響,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圖1和圖2中的四邊形ABCD都是正方形,△ABE的邊長(zhǎng)分別為a,b,c,請(qǐng)你從圖1到圖2,圖2到圖3的變換過(guò)程中,利用幾何圖形的面積關(guān)系,求a,b,c之間的等量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知AE∥BF,AE=BF,A、C、D、B在同一直線上,要使△ADE≌△BCF,可添加的一個(gè)條件可以是____________________.(寫(xiě)一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,在△ABC外側(cè)作直線CP,點(diǎn)A關(guān)于直線CP的對(duì)稱(chēng)點(diǎn)為D,連接AD,BD,其中BD交直線CP于點(diǎn)E.
(1)如圖1,∠ACP=15°.
①依題意補(bǔ)全圖形;
②求∠CBD的度數(shù);
(2)如圖2,若45°<∠ACP<90°,直接用等式表示線段AC,DE,BE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為( )
A. 3 B. C. 2或3 D. 3或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,線段AM為BC邊上的中線.動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊在CD的下方作等邊△CDE,連結(jié)BE.
(1)求∠CAM的度數(shù);
(2)若點(diǎn)D在線段AM上時(shí),求證:△ADC≌△BEC;
(3)當(dāng)動(dòng)D在直線AM上時(shí),設(shè)直線BE與直線AM的交點(diǎn)為O,試判斷∠AOB是否為定值?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),一次函數(shù)圖象經(jīng)過(guò)點(diǎn)B(﹣2,﹣1).
(1)求一次函數(shù)解析式;
(2)判斷(3,5)是否在一次函數(shù)圖象上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com