【題目】如圖,正方形ABCD的邊長是2,點E是CD邊的中點,點F是邊BC上不與點B,C重合的一個動點,把∠C沿直線EF折疊,使點C落在點C′處.當△ADC′為等腰三角形時,FC的長為_____.
【答案】或1.
【解析】
首先證明DC′≠DA,只要分兩種情形討論即可:①如圖1中,當AD=AC′=2時,連接AE.構(gòu)建方程即可;②如圖2中,當點F在BC中點時,易證AC′=DC′,滿足條件.
由題意DE=EC=EC′=1,
∴DC′<1+1
∴DC′≠DA,只要分兩種情形討論即可:
①如圖1中,當AD=AC′=2時,連接AE.
∵AE=AE,AD=AC′,DE=EC′,
∴△ADE≌△AC′E,
∴∠ADE=∠AC′E=90°,
∵∠C=∠FC′E=90°,
∴∠AC′E+∠FC′E=180°,
∴A、C′、F共線,設(shè)CF=x,則BF=2-x,AF=2+x,
在Rt△ABF中,22+(2-x)2=(2+x)2,
解得x=.
②如圖2中,當點F在BC中點時,易證AC′=DC′,滿足條件,此時CF=1.
綜上所述,滿足條件的CF的長為或1.
故答案為:或1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為,點是軸正半軸上一點,以為邊作等腰直角三角形,使,點在第一象限。若點在函數(shù)的圖象上,則的面積為( )
A. .B. .C. .D. .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“才飲長沙水,又食武昌魚”.因一代偉人毛澤東的佳句,“鄂州武昌魚”名揚天下.某網(wǎng)店專門銷售某種品牌真空包裝的武昌魚熟食產(chǎn)品,成本為30元/盒,每天銷售y(盒)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天這種武昌魚熟食產(chǎn)品的銷售量不低于240盒,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3 600元,試確定這種武昌魚熟食產(chǎn)品銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一個動點,以B點為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。
A.2-2B.4﹣2C.2﹣D.-1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC分別交AC、AB的延長線于點E、F.
(1)求證:EF是⊙O的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交y軸于點A,交x軸于點B(-3,0)和點C(1,0),頂點為點M.
(1)求拋物線的解析式;
(2)如圖,點E為x軸上一動點,若△AME的周長最小,請求出點E的坐標;
(3)點F為直線AB上一個動點,點P為拋物線上一個動點,若△BFP為等腰直角三角形,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中有菱形OABC,A點的坐標為(10,0),對角線OB、AC相交于點D,雙曲線y=(x>0)經(jīng)過點D,交BC的延長線于點E,且OBAC=160,則點E的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22017
首先設(shè)S=1+2+22+23+24+…+22017 ① 則2S=2+22+23+24+25+…+22018 ②
②﹣①得S=22018﹣1 即1+2+22+23+24+…+22017=22018﹣1
以上解法,在數(shù)列求和中,我們稱之為:“錯位相減法”
請你根據(jù)上面的材料,解決下列問題
(1)求1+3+32+33+34+…+32019的值
(2)若a為正整數(shù)且,求
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.
(Ⅰ)AC的長等于_____;
(Ⅱ)在線段AC上有一點D,滿足AB2=ADAC,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點D,并簡要說明點D的位置是如何找到的(不要求證明)_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com