【題目】如圖,△ABC內接于⊙O,直徑AF平分∠BAC,交BC于點D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點E,連接ED、EC,ED交AC于點G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當BC是⊙O的直徑時,取DC的中點M,連接AM并延長交圓于點N,且EG=5,連接CN并求CN的長.

【答案】
(1)證明:如圖1,連接BF、CF,

∵AF是⊙O的直徑,

∴∠ABF=∠ACF=90°,

∵AF平分∠BAC,

∴∠BAF=∠CAF,

∴∠AFB=∠AFC,

,

∴AB=AC


(2)證明:如圖2,∵ED=EC,

∴∠EDC=∠ECD,

∵∠EGC=∠ACB+∠EDC,

∴∠EGC=∠ACB+∠ECD=∠ACB+∠ACB+∠ECA=∠ECA+2∠ACB


(3)證明:如圖3,連接EM,交AC于H,連接OH,

∵ED=EC,M是DC的中點,

∴EM⊥DC,

∴∠BME=90°,

∵BC為⊙O 的直徑,

∴∠BAC=90°,

∵AB=AC,

∴∠B=45°,

∴△BME是等腰直角三角形,

∴∠BEM=45°,

∴△EAH是等腰直角三角形,

∴AE=AH,

∵AB=AC,OB=OC,

∴AO⊥BC,AO=OB=OC= BC,

∵∠AOC=∠HMC=90°,

∴MH∥AO,

∵M是OC的中點,

∴H是AC的中點,

∴AH=CH=OH,OH⊥AC,

∴AE=OH,

∵∠EAH=∠AHO=90°,

∴AE∥OH,

∴四邊形AOHE是平行四邊形,

∴AG=GH,EG=OG=5,

設AG=x,則GH=x,OH=2x,

在Rt△OGH中,52=x2+(2x)2,

x=

∴AG=GH= ,OH=HC=2 ,AC=4

∴AO= = =2 ,

∴OC=2

∴MC= OC= ,

在Rt△AOM中,AM= = =5 ,

∵∠N=∠B=45°,

∴∠N=∠ACB=45°,

∵∠NAC=∠MAC,

∴△AMC∽△ACN,

,

,

∴CN=4.


【解析】(1)連接BF、CF,根據角平分線和直徑所對的圓周角是直角得:∠AFB=∠AFC,則所對的弧相等,弦相等;(2)根據等腰三角形的性質:等邊對等角得:∠EDC=∠ECD,再由外角定理得:∠EGC=∠ACB+∠EDC,等量代換可得結論;(3)作輔助線,構建高線和中位線,①證明四邊形AOHE是平行四邊形,得AG=GH,EG=OG=5,②設AG=x,則GH=x,OH=2x,分別計算AG,OH,AC,AO,AM的長;③證明△AMC∽△ACN,列比例式可求得CN的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于兩個相似三角形,如果沿周界按對應點順序環(huán)繞的方向相同,那么稱這兩個三角形互為順相似;如果沿周界按對應點順序環(huán)繞的方向相反,那么稱這兩個三角形互為逆相似.例如,如圖①,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環(huán)繞的方向相同,因此△ACB和△A′B′C′互為順相似;如圖②,△ABC∽△A′B′C′,且沿周界ABCA與A′B′C′A′環(huán)繞的方向相反,因此△ACB和△A′B′C′互為逆相似.

(1)根據圖Ⅰ,圖Ⅱ和圖Ⅲ滿足的條件.可得下列三對相似三角形:①△ADE與△ABC;②△GHO與△KFO;③△NQP與△NMQ;其中,互為順相似的是;互為逆相似的是 . (填寫所有符合要求的序號).

(2)如圖③,在銳角△ABC中,∠A<∠B<∠C,點P在△ABC的邊上(不與點A,B,C重合).過點P畫直線截△ABC,使截得的一個三角形與△ABC互為逆相似.請根據點P的不同位置,探索過點P的截線的情形,畫出圖形并說明截線滿足的條件,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,O為坐標原點,點P是反比例函數(shù)y= (x>0)圖象上的一個動點,若以點P為圓心,3為半徑的圓與直線y=x相交,交點為A,B,當弦AB的長等于2 時,點P的坐標為(

A.(1,6)和(6,1)
B.(2,3)和(3,2)??
C.( ,3 )和(3 ,
D.( ,2 )和(2 ,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙P的圓心為P(﹣2,1),半徑為2,直線MN過點M(2,3),N(4,1).

(1)請你在圖中作出⊙P關于y軸對稱的⊙P′(不要求寫作法);
(2)請判斷(1)中⊙P′與直線MN的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,則線段BC的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB,點A、B均在小正方形的頂點上.
(1)在方格紙中畫出以AB為一邊的直角△ABC,點C在小正方形的頂點上,且△ABC的面積為3.
(2)在方格紙中將△ABC繞點C逆時針旋轉90°,畫出旋轉后△DEC(點A與點D對應,點B與點E對應),請直接寫出點A繞著點C旋轉的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某公園的一座石拱橋是圓弧形(劣。,其跨度為24米,拱的半徑為13米,則拱高為(
A.5米
B.8米
C.7米
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年《政府工作報告》中提出了十大新詞匯,為了解同學們對新詞匯的關注度,某數(shù)學興趣小組選取其中的A:“互聯(lián)網+政務服務”,B:“工匠精神”,C:“光網城市”,D:“大眾旅游時代”四個熱詞在全校學生中進行了抽樣調查,要求被調查的每位同學只能從中選擇一個我最關注的熱詞.根據調查結果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖.
請你根據統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調查中,一共調查了多少名同學?
(2)條形統(tǒng)計圖中,m= , n=;
(3)扇形統(tǒng)計圖中,熱詞B所在扇形的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點D、E分別在△ABC的邊AB、AC上,下列給出的條件中,不能判定DE∥BC的是(
A.BD:AB=CE:AC
B.DE:BC=AB:AD
C.AB:AC=AD:AE
D.AD:DB=AE:EC

查看答案和解析>>

同步練習冊答案