【題目】如圖,某公園的一座石拱橋是圓弧形(劣。,其跨度為24米,拱的半徑為13米,則拱高為( )
A.5米
B.8米
C.7米
D.5 米
【答案】B
【解析】解:因為跨度AB=24m,拱所在圓半徑為13m, 所以找出圓心O并連接OA,延長CD到O,構(gòu)成直角三角形,
利用勾股定理和垂徑定理求出DO=5,
進(jìn)而得拱高CD=CO﹣DO=13﹣5=8.故選B.
【考點精析】關(guān)于本題考查的勾股定理的概念和垂徑定理的推論,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條;推論2 :圓的兩條平行弦所夾的弧相等才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中O是原點,ABCD的頂點A,C的坐標(biāo)分別是(8,0),(3,4),點D,E把線段OB三等分,延長CD、CE分別交OA、AB于點F,G,連接FG.則下列結(jié)論:
①F是OA的中點;②△OFD與△BEG相似;③四邊形DEGF的面積是 ;④OD=
其中正確的結(jié)論是(填寫所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑AF平分∠BAC,交BC于點D.
(1)如圖1,求證:AB=AC;
(2)如圖2,延長BA到點E,連接ED、EC,ED交AC于點G,且ED=EC,求證:∠EGC=∠ECA+2∠ACB;
(3)如圖3,在(2)的條件下,當(dāng)BC是⊙O的直徑時,取DC的中點M,連接AM并延長交圓于點N,且EG=5,連接CN并求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD⊥BC于點D,點E為AC邊的中點,過點A作AF∥BC,交DE的延長線于點F,連接CF.
(1)如圖1,求證:四邊形ADCF是矩形;
(2)如圖2,當(dāng)AB=AC時,取AB的中點G,連接DG、EG,在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形ADCF).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲轉(zhuǎn)盤被分成 3 個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標(biāo)有相應(yīng)的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時,重轉(zhuǎn),直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,求點(x,y)落在第二象限內(nèi)的概率;
(2)直接寫出點(x,y)落在函數(shù)y=﹣ 圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結(jié)論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BD交BC于F,連接DF,G為DF中點,連接EG,CG.
(1)求證:EG=CG;EG⊥CG.
(2)將圖①中△BEF繞B點逆時針旋轉(zhuǎn)45°,如圖②所示,取DF中點G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過C點的反比例函數(shù)的解析式為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com