【題目】如圖,點(diǎn)P是∠AOB內(nèi)部的一點(diǎn),∠AOB=30°,OP=8cm,M,N是OA,OB上的兩個(gè)動(dòng)點(diǎn),則△MPN周長的最小值_____cm.
【答案】8
【解析】
設(shè)點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,關(guān)于OB的對稱點(diǎn)為D,當(dāng)點(diǎn)M、N在CD上時(shí),△PMN的周長最。
分別作點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OP、OC、OD、PM、PN.
∵點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,關(guān)于OB的對稱點(diǎn)為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點(diǎn)P關(guān)于OB的對稱點(diǎn)為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=8cm.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN=CD=8cm.
故答案為:8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AB=4,點(diǎn)E為AB的中點(diǎn).以AE為邊作等邊△ADE(點(diǎn)D與點(diǎn)C分別在AB的異側(cè)),連接CD.則△ACD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線與軸,軸分別交于A,B兩點(diǎn),過點(diǎn)B在第二象限內(nèi)作且,連接.
(1)求點(diǎn)C的坐標(biāo).
(2)如圖2,過點(diǎn)C作直線軸交AB于點(diǎn)D,交軸于點(diǎn)E,
請從下列A,B兩題中任選一題作答,我選擇______題
A.①求線段CD的長.
②在坐標(biāo)平面內(nèi),是否存在點(diǎn)M(除點(diǎn)B外),使得以點(diǎn)M,C,D為頂點(diǎn)的三角形與全等?若存在,請直接寫出所有符合條件的點(diǎn)M的坐標(biāo):若不存在,請說明理由.
B.①如圖3,在圖2的基礎(chǔ)上,過點(diǎn)D作于點(diǎn)F,求線段DF的長.
②在坐標(biāo)平面內(nèi),是否存在點(diǎn)M(除點(diǎn)F外),使得以點(diǎn)M,C,D為頂點(diǎn)的三角形與全等?若存在,請直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機(jī)抽取了50名同學(xué)進(jìn)行“舌尖上的沙縣﹣﹣我最喜愛的沙縣小吃”調(diào)查活動(dòng),將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計(jì)圖.
請根據(jù)所給信息解答以下問題:
(1)請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在一個(gè)不透明的口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號為四種小吃的序號A,B,C,D.隨機(jī)地摸出一個(gè)小球然后放回,再隨機(jī)地摸出一個(gè)小球.請用列表或畫樹狀圖的方法,求出兩次都摸到A的概率.
(3)近幾年,沙縣小吃產(chǎn)業(yè)發(fā)展良好,給沙縣經(jīng)濟(jì)帶來了發(fā)展.2011年底,小吃產(chǎn)業(yè)年?duì)I業(yè)額達(dá)50億元,到了2013年底,小吃產(chǎn)業(yè)年?duì)I業(yè)額達(dá)60.5億元.假設(shè)每年的小吃產(chǎn)業(yè)年?duì)I業(yè)額平均增長率不變,求這兩年平均增長率是多少?(數(shù)據(jù)來源于網(wǎng)絡(luò))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點(diǎn)A1在雙曲線y=(x>0)上,點(diǎn)B1的坐標(biāo)為(2,0).過B1作B1A2∥OA1交雙曲線于點(diǎn)A2,過A2作A2B2∥A1B1交x軸于點(diǎn)B2,得到第二個(gè)等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點(diǎn)A3,過A3作A3B3∥A2B2交x軸于點(diǎn)B3,得到第三個(gè)等邊△B2A3B3;以此類推,…,則點(diǎn)B6的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)不透明的布袋里,都裝有3個(gè)大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2,乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個(gè)小球,把球上的數(shù)字記為x,再從乙袋中任意摸出一個(gè)小球,把球上的數(shù)字記為y,以此確定點(diǎn)M的坐標(biāo)(x,y).
(1)請你用畫樹狀圖或列表的方法(只選其中一種),寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=﹣2x的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為 20 元/千克,售價(jià)不低于 20 元/千克,且不超過 32 元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量 y(千克)與該天的售價(jià) x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量 y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià) x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價(jià)為 23.5 元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利 150 元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com