【題目】完成以下證明,并在括號(hào)內(nèi)填寫理由.
已知:如圖所示,∠1=∠2,∠A=∠3.
求證:∠ABC+∠4+∠D=180°.
證明:∵∠1=∠2
∴ ∥ ( )
∴∠A=∠4( )
∠ABC+∠BCE=180°( )
即∠ABC+∠ACB+∠4=180°
∵∠A=∠3
∴∠3=
∴ ∥
∴∠ACB=∠D( )
∴∠ABC+∠4+∠D=180°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平陽(yáng)中學(xué)長(zhǎng)方形足球場(chǎng)的周長(zhǎng)為310米,長(zhǎng)比寬多25米,問這個(gè)足球場(chǎng)的長(zhǎng)和寬分別是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到Rt△ADE的位置,點(diǎn)E在斜邊AB上,連結(jié)BD,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)如圖1,若點(diǎn)F與點(diǎn)A重合,求證:AC=BC;
(2)若∠DAF=∠DBA,①如圖2,當(dāng)點(diǎn)F在線段CA的延長(zhǎng)線上時(shí),判斷線段AF與線段BE的數(shù)量關(guān)系,并說明理由;
②當(dāng)點(diǎn)F在線段CA上時(shí),設(shè)BE=x,請(qǐng)用含x的代數(shù)式表示線段AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知:AB∥CD,點(diǎn)E,F分別在AB,CD上,且OE⊥OF.
(1)求證:∠1+∠2=90°;
(2)如圖2,分別在OE,CD上取點(diǎn)G,H,使FO平分∠CFG,EO平分∠AEH,求證:FG∥EH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件是隨機(jī)事件的是( )
A. 畫一個(gè)三角形,其內(nèi)角和是180°
B. 任意畫一個(gè)四邊形,其周長(zhǎng)與對(duì)角線的和相等
C. 任取一個(gè)實(shí)數(shù),與其相反數(shù)之和為0
D. 外觀相同的10件同種產(chǎn)品中有2件是不合格產(chǎn)品,現(xiàn)從中抽取1件即為合格品
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 y 2 與 x 1成正比例,且 x 3時(shí) y 4 。
(1)求 y 與 x 之間的函數(shù)關(guān)系式;
(2)當(dāng) y 1時(shí),求 x 的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形ABCD中,AB=BC,BC=10,∠BCD=60°,兩頂點(diǎn)B、D分別在平面直角坐標(biāo)系的y軸、x軸的正半軸上滑動(dòng),連接OA,則OA的長(zhǎng)的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)論a取何值,關(guān)于x的函數(shù)y=﹣x+a2+1的圖象都不經(jīng)過( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com