【題目】如圖,在ABC中,∠C90°,BC16 cm,AC12 cm,點(diǎn)P從點(diǎn)B出發(fā),沿BC2 cm/s的速度向點(diǎn)C移動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1 cm/s的速度向點(diǎn)A移動(dòng),若點(diǎn)P、Q分別從點(diǎn)B、C同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t__________時(shí),CPQCBA相似.

【答案】4.8

【解析】

根據(jù)題意可分兩種情況,①當(dāng)CPCB是對(duì)應(yīng)邊時(shí),CPQ∽△CBA與②CPCA是對(duì)應(yīng)邊時(shí),CPQ∽△CAB,根據(jù)相似三角形的性質(zhì)分別求出時(shí)間t即可.

CPCB是對(duì)應(yīng)邊時(shí),CPQ∽△CBA,

所以,

,

解得t4.8;

CPCA是對(duì)應(yīng)邊時(shí),CPQ∽△CAB,

所以

,

解得t.

綜上所述,當(dāng)t4.8時(shí),CPQCBA相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,點(diǎn)D在邊AC上,BD的垂直平分線交CA的延長(zhǎng)線于點(diǎn)E,交BD于點(diǎn)F,聯(lián)結(jié)BE,ED2EAEC

1)求證:∠EBA=∠C;

2)如果BDCD,求證:AB2ADAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(4,2),B(2,6)C(0,4)是直角坐標(biāo)系平面上三點(diǎn).

(1)ABC向右平移4個(gè)單位再向下平移1個(gè)單位,得到A1B1C1,畫(huà)出平移后的圖形;

(2)ABC內(nèi)部有一點(diǎn)P(ab),則平移后它的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為__________;

(3)以原點(diǎn)O為位似中心,將ABC縮小為原來(lái)的一半,得到A2B2C2,請(qǐng)?jiān)谒o的坐標(biāo)系中作出所有滿足條件的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩千多年前,我國(guó)的學(xué)者墨子和他的學(xué)生做了小孔成像的實(shí)驗(yàn).他的做法是,在一間黑暗的屋子里,一面墻上開(kāi)一個(gè)小孔,小孔對(duì)面的墻上就會(huì)出現(xiàn)外面景物的倒像.小華在學(xué)習(xí)了小孔成像的原理后,利用如圖裝置來(lái)驗(yàn)證小孔成像的現(xiàn)象.已知一根點(diǎn)燃的蠟燭距小孔20 cm,光屏在距小孔30 cm處,小華測(cè)量了蠟燭的火焰高度為2 cm,則光屏上火焰所成像的高度為__________ cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在鈍角ABC中,AB5 cm,AC10 cm,動(dòng)點(diǎn)DA點(diǎn)出發(fā)到B點(diǎn)止,動(dòng)點(diǎn)EC點(diǎn)出發(fā)到A點(diǎn)止,點(diǎn)D運(yùn)動(dòng)的速度為1 cm/秒,點(diǎn)E運(yùn)動(dòng)的速度為2 cm/秒,如果兩點(diǎn)同時(shí)運(yùn)動(dòng),那么當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與ABC相似時(shí),運(yùn)動(dòng)的時(shí)間是(  )

A. 2.5

B. 4.5

C. 2.5秒或4.5

D. 2.5秒或4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,按要求畫(huà)出A1B1C1A2B2C2;

(1)O為位似中心,在點(diǎn)O的同側(cè)作A1B1C1,使得它與原三角形的位似比為12;

(2)ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到A2B2C2,并求出點(diǎn)A旋轉(zhuǎn)的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個(gè)矩形發(fā)生變形后成為一個(gè)平行四邊形,設(shè)這個(gè)平行四邊形相鄰兩個(gè)內(nèi)角中較小的一個(gè)內(nèi)角為α,我們把的值叫做這個(gè)平行四邊形的變形度.

1)若矩形發(fā)生變形后的平行四邊形有一個(gè)內(nèi)角是120度,則這個(gè)平行四邊形的變形是 

猜想證明:

2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2 之間的數(shù)量關(guān)系,并說(shuō)明理由;

拓展探究:

3)如圖2,在矩形ABCD中,EAD邊上的一點(diǎn),且AB2=AEAD,這個(gè)矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1E的對(duì)應(yīng)點(diǎn),連接B1E1,B1D1,若矩形ABCD的面積為4 m0),平行四邊形A1B1C1D1的面積為2m0),試求∠A1E1B1+A1D1B1的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量豎直旗桿AB的高度,某綜合實(shí)踐小組在地面D處豎直放置標(biāo)桿CD,并在地面上水平放置個(gè)平面鏡E,使得B,E,D在同一水平線上,如圖所示.該小組在標(biāo)桿的F處通過(guò)平面鏡E恰好觀測(cè)到旗桿頂A(此時(shí)∠AEB=FED).F處測(cè)得旗桿頂A的仰角為39.3°,平面鏡E的俯角為45°,F(xiàn)D=1.8問(wèn)旗桿AB的高度約為多少米? (結(jié)果保留整數(shù))(參考數(shù)據(jù):tan39.3°≈0.82,tan84.3°≈10.02)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個(gè)交點(diǎn)B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0②abc0;方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);當(dāng)1x4時(shí),有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案