【題目】某超市銷售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià)現(xiàn)在的售價(jià)為每箱36元,每月可銷售60箱市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價(jià)x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x之間的函數(shù)關(guān)系式和自變量x的取值范圍;
(2)市如何定價(jià),才能使每月銷售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?

【答案】
(1)解:根據(jù)題意,得:y=60+10x,由36﹣x≥24得x≤12,

∴1≤x≤12,且x為整數(shù)


(2)解:設(shè)所獲利潤(rùn)為W,

則W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,

∴當(dāng)x=3時(shí),W取得最大值,最大值為810,

答:超市定價(jià)為33元時(shí),才能使每月銷售牛奶的利潤(rùn)最大,最大利潤(rùn)是810元.


【解析】(1)根據(jù)售價(jià)每降價(jià)1元,則每月的銷量將增加10箱,可得出多賣10x件,因此可以列出函數(shù)關(guān)系式,求出其取值范圍。注意x為整數(shù)。
(2)根據(jù)利潤(rùn)=(售價(jià)-進(jìn)價(jià))銷售量y。列出函數(shù)解析式,化成頂點(diǎn)式,求出最大值即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示玲玲騎自行車離家的距離與時(shí)間的關(guān)系.9點(diǎn)離開家,15點(diǎn)回到家,請(qǐng)根據(jù)圖象回答下列問題:

(1)玲玲到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?她離家多遠(yuǎn)?

(2)她何時(shí)開始第一次休息?休息了多長(zhǎng)時(shí)間?

(3)第一次休息時(shí),她離家多遠(yuǎn)?

(4)11點(diǎn)~12點(diǎn)她騎車前進(jìn)了多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家發(fā)改委、工業(yè)和信息化部、財(cái)政部公布了節(jié)能產(chǎn)品惠民工程,公交公司積極響應(yīng)將舊車換成節(jié)能環(huán)保公交車,計(jì)劃購(gòu)買A型和B型兩種環(huán)保型公交車10輛,其中每臺(tái)的價(jià)格、年載客量如表:

A

B

價(jià)格(萬元/臺(tái))

x

y

年載客量/萬人次

60

100

若購(gòu)買A型環(huán)保公交車1輛,B型環(huán)保公交車2輛,共需400萬元;若購(gòu)買A型環(huán)保公交車2輛,B型環(huán)保公交車1輛,共需350萬元.

1)求xy的值;

2)如果該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保10輛公交車在該線路的年載客量總和不少于680萬人次,問有哪幾種購(gòu)買方案?

3)在(2)的條件下,哪種方案使得購(gòu)車總費(fèi)用最少?最少費(fèi)用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BA到D,使∠BDC=30°.

(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1 2

3 7.5+(﹣2)﹣(+22.5+(﹣6 4

5 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG、DE.
n
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)角(0°< <360°)得到正方形OE’F’G’,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠OAG’是直角時(shí),求 的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過程中,求AF’長(zhǎng)的最大值和此時(shí) 的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),且在直線BC的上方.

(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某場(chǎng)足球比賽中,球員甲從球門底部中心點(diǎn)O的正前方10m處起腳射門,足球沿拋物線飛向球門中心線;當(dāng)足球飛離地面高度為3m時(shí)達(dá)到最高點(diǎn),此時(shí)足球飛行的水平距離為6m.已知球門的橫梁高為2.44m.

(1)在如圖所示的平面直角坐標(biāo)系中,問此飛行足球能否進(jìn)球門?(不計(jì)其它情況)
(2)守門員乙站在距離球門2m處,他跳起時(shí)手的最大摸高為2.52m,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠(yuǎn)才能阻止球員甲的射門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①,②,③三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論可以組成3個(gè)命題.

1)這三個(gè)命題中,真命題的個(gè)數(shù)為________;

2)選擇一個(gè)真命題,并且證明.(要求寫出每一步的依據(jù))

查看答案和解析>>

同步練習(xí)冊(cè)答案