(2009•浦東新區(qū)二模)已知:如圖,△ABC與△BDE都是正三角形,且點(diǎn)D在邊AC上,并與端點(diǎn)A、C不重合.求證:(1)△ABE≌△CBD;(2)四邊形AEBC是梯形.

【答案】分析:根據(jù)等邊三角形的性質(zhì)利用SAS判定△ABE≌△CBD;由三角形全等可得∠BAE=∠C=60°,AE=CD,從而得到∠BAE=∠ABC,內(nèi)錯(cuò)角相等兩直線平行即AE∥BC,因?yàn)锽C=AC>CD,即BC>AE所以四邊形AEBC是梯形.
解答:證明:(1)在正△ABC與正△BDE中
∵AB=BC,BE=BD,∠ABC=∠EBD=60°,(3分)
∴∠ABE=∠CBD.(1分)
∴△ABE≌△CBD.(2分)

(2)∵△ABE≌△CBD,
∴∠BAE=∠C=60°,AE=CD.(2分)
∴∠BAE=∠ABC.(1分)
∴AE∥BC.(1分)
又∵BC=AC>CD,
∴BC>AE.(1分)
∴四邊形AEBC是梯形.(1分)
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等邊三角形的性質(zhì),全等三角形的判定及梯形的判定的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•浦東新區(qū)二模)如圖,已知AB⊥MN,垂足為點(diǎn)B,P是射線BN上的一個(gè)動(dòng)點(diǎn),AC⊥AP,∠ACP=∠BAP,AB=4,BP=x,CP=y,點(diǎn)C到MN的距離為線段CD的長(zhǎng).
(1)求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,點(diǎn)C到MN的距離是否會(huì)發(fā)生變化?如果發(fā)生變化,請(qǐng)用x的代數(shù)式表示這段距離;如果不發(fā)生變化,請(qǐng)求出這段距離;
(3)如果圓C與直線MN相切,且與以BP為半徑的圓P也相切,求BP:PD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•浦東新區(qū)二模)已知一次函數(shù)y=-x+m的圖象經(jīng)過(guò)點(diǎn)A(-2,3),并與x軸相交于點(diǎn)B,二次函數(shù)y=ax2+bx-2的圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B.
(1)分別求這兩個(gè)函數(shù)的解析式;
(2)如果將二次函數(shù)的圖象沿y軸的正方向平移,平移后的圖象與一次函數(shù)的圖象相交于點(diǎn)P,與y軸相交于點(diǎn)Q,當(dāng)PQ∥x軸時(shí),試問(wèn)二次函數(shù)的圖象平移了幾個(gè)單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•浦東新區(qū)二模)一根橫截面為圓形的下水管道的直徑為1米,管內(nèi)有少量的污水(如圖),此時(shí)的水面寬AB為0.6米.
(1)求此時(shí)的水深(即陰影部分的弓形高);
(2)當(dāng)水位上升到水面寬為0.8米時(shí),求水面上升的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2009•浦東新區(qū)二模)求不等式組的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年上海市浦東新區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2009•浦東新區(qū)二模)如果等腰三角形的腰長(zhǎng)為13厘米,底邊長(zhǎng)為10厘米,那么底角的余切值等于( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案