【題目】如圖①,在等邊中,,動點從點出發(fā),沿邊以每秒1個單位的速度向終點運動,同時動點從點出發(fā),以每秒2個單位的速度沿著方向運動.連結(jié),設(shè)點運動的時間秒.
(1)用含的代數(shù)式表示線段的長.
(2)當(dāng)時,求的值.
(3)若的面積為,求與之間的函數(shù)關(guān)系式.
(4)如圖②,當(dāng)點在、之間時,連結(jié),被分割成、、,當(dāng)其中的某兩個三角形面積相等時,直接寫出的值.
【答案】(1)當(dāng)0≤≤3時,,當(dāng)3<≤6時,;(2);(3),;(4)或
【解析】
(1)分類討論:當(dāng)0≤≤3時和當(dāng)3<≤6時,根據(jù)題目意思結(jié)合圖形解答即可;
(2)根據(jù)直角三角形的性質(zhì)列出方程,解方程得到答案;
(3)作QH⊥AB于H,根據(jù)直角三角形的性質(zhì)用t表示出QH,根據(jù)三角形的面積公式解答;
(4)分△APQ的面積=△PCQ的面積、△APQ的面積=△PCB的面積、△CPQ的面積=△PCB的面積三種情況進行討論.
解:(1)由題意知得:點Q的運動路程為2t,
當(dāng)0≤≤3時,,
當(dāng)3<≤6時,.
(2)∵△ABC為等邊三角形,
∴∠A=60°,
當(dāng)時,∠QPA=30°,
∴AQ=,即,
解得.
(3)如圖①所示,作QH⊥AB于H,
在Rt△QBH中,,
,
如圖②所示,作QH⊥AB于H,
在Rt△QAH中,,
.
(4)當(dāng)點Q為AC的中點時,△APQ的面積=△PCQ的面積,
即12-2t=3,
解得:,
如圖①,作CE⊥AB于E,
則,
∴△ABC的面積:,
,
∴△BPC的面積:,
∴△APC的面積:,
,
∴△APQ的面積:,
∴△APC的面積:,
當(dāng)△APQ的面積=△PCB的面積時,
,
整理得:t2-t+4=0,
△=1-16=-15<0,此方程無解,
當(dāng)△CPQ的面積=△PCB的面積時,
,
解得:(舍去),
綜上所述:在△APQ、△PCQ、△PBC中,其中某兩個三角形相等時,或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:
(1)當(dāng)轎車剛到乙地時,此時貨車距離乙地 千米;
(2)當(dāng)轎車與貨車相遇時,求此時x的值;
(3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D四點都在OO上,弧AC=弧BC,連接AB,CD、AD,∠ADC=45°.
(1)如圖1,AB是⊙O的直徑;
(2)如圖2,過點B作BE⊥CD于點E,點F在弧AC上,連接BF交CD于點G,∠FGC=2∠BAD,求證:BA平分∠FBE;
(3)如圖3,在(2)的條件下,MN與⊙O相切于點M,交EB的延長線于點N,連接AM,若2∠MAD+∠FBA=135°,MN=AB,EN=26,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限的交點為.
(1)求與的值;
(2)設(shè)一次函數(shù)的圖像與軸交于點,連接,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②均是4×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,四邊形ABCD的頂點均在格點上,僅用無刻度直尺,分別按下列要求畫圖.
(1)在圖①中的線段CD上找到一點E,連結(jié)AE,使得AE將四邊形ABCD的面積分成1:2兩部分.
(2)在圖②中的四邊形ABCD外部作一條直線l,使得直線l上任意一點與點A、B構(gòu)成三角形的面積是四邊形ABCD面積的.(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點C,過點F作⊙O的切線交AB的延長線于點D.
(1)已知∠A=α,求∠D的大。ㄓ煤α的式子表示);
(2)取BE的中點M,連接MF,請補全圖形;若∠A=30°,MF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項測試:筆試、面試、實習(xí).學(xué)生的最終成績由筆試面試、實習(xí)依次按3:2:5的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對他們的兩項成績分別進行了整理和分析.下面給出了部分信息:
①公司將筆試成績(百分制)分成了四組,分別為A組:60≤x<70,B組:70≤x<80,C組:80≤x<90,D組:90≤x<100;并繪制了如下的筆試成績頻數(shù)分布直方圖.其中,C組的分?jǐn)?shù)由低到高依次為:80,81,82,83,83,84,84,85,86,88,88,88,89.
②這些大學(xué)生的筆試、面試成績的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 最高分 | |
筆試成績 | 81 | m | 92 | 97 |
面試成績 | 80.5 | 84 | 86 | 92 |
根據(jù)以上信息,回答下列問題:
(1)這批大學(xué)生中筆試成績不低于88分的人數(shù)所占百分比為 .
(2)m= 分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績都是83分,那么該同學(xué)成績排名靠前的是 成績,理由是 .
(3)乙同學(xué)也參加了本次招聘,筆試成績雖不是最高分,但也不錯,分?jǐn)?shù)在D組;面試成績?yōu)?/span>88分,實習(xí)成績?yōu)?/span>80分由表格中的統(tǒng)計數(shù)據(jù)可知乙同學(xué)的筆試成績?yōu)?/span> 分;若該公司最終錄用的最低分?jǐn)?shù)線為86分,請通過計算說明,該同學(xué)最終能否被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一勘測人員從山腳點出發(fā),沿坡度為的坡面行至點處時,他的垂直高度上升了米;然后再從點處沿坡角為的坡面以米/分鐘的速度到達山頂點時,用了分鐘.
(1)求點到點之間的水平距離;
(2)求山頂點處的垂直高度是多少米?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),二次函數(shù)的圖象與軸、直線的交點分別為點、.
圖(1) 圖(2) (備用圖)
(1)_________,_________,=_________;
(2)連接AB,點是拋物線上一點(異于點A),且,求點的坐標(biāo);
(3)如圖(2),點、是線段上的動點,且.設(shè)點的橫坐標(biāo)為.
①過點、分別作軸的垂線,與拋物線相交于點、,連接.當(dāng)取得最大值時,求的值并判斷四邊形的形狀;
②連接、,求為何值時,取得最小值,并求出這個最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com