【題目】閱讀下列兩則材料,回答問題,材料一:定義直線y=ax+b與直線y=bx+a互為“互助直線”,例如,直線y=x+4與直y=4x+1互為“互助直線”;材料二:對于平面直角坐標系中的任意兩點P1(x1,y1)、P2(x2,y2),P1、P2兩點間的直角距離d(P1,P2)=|x1﹣x2|+|y1﹣y2|.如:Q1(﹣3,1)、Q2(2,4)兩點間的直角距離為d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8;材料三:設(shè)P0(x0,y0)為一個定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.
(1)計算S(﹣1,6),T(﹣2,3)兩點間的直角距離d(S,T)= ;
(2)直線y=﹣2x+3上的一點H(a,b)又是它的“互助直線”上的點,求點H的坐標.
(3)對于直線y=ax+b上的任意一點M(m,n),都有點N(3m,2m﹣3n)在它的“互助直線”上,試求點L(5,﹣1)到直線y=ax+b的直角距離.
【答案】(1)4;(2)點H(1,1);(3)5
【解析】
(1)根據(jù)兩點間的直角距離公式即可得;
(2)先根據(jù)“互助直線”的定義得出互助直線的解析式,再聯(lián)立求解即可得;
(3)先根據(jù)“互助直線”的定義得出互助直線的解析式,再根據(jù)點M、N的坐標可得一個關(guān)于a、b的方程組,依據(jù)“對于任意一點M都成立”可求出a、b的值,從而可得直線的解析式,然后根據(jù)點到直線的直角距離的定義即可得.
(1)由兩點間的直角距離公式得:
故答案為:4;
(2)直線的“互助直線”為
聯(lián)立,解得
則點H的坐標為;
(3)直線的“互助直線”為
由題意得:
解得
對于任意一點,上述等式都成立
則,解得
因此,直線的解析式為
設(shè)點是直線的動點
則
當時,
當時,
當時,
綜上,的最小值為
則點到直線的直角距離為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,△ABC的頂點都在格點上,請完成下列任務(wù):
(1)將△ABC繞點C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C;
(2)求線段AC旋轉(zhuǎn)到A1C的過程中,所掃過的圖形的面積;
(3)以點O為位似中心,位似比為2,將△A1B1C放大得到△A2B2C2(在網(wǎng)格之內(nèi)畫圖).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,中,于,且.
(1)試說明是等腰三角形;
(2)已知,如圖2,動點從點出發(fā)以每秒的速度沿線段向點運動,同時動點從點出發(fā)以相同速度沿線段向點運動,設(shè)點運動的時間為(秒).
①若的邊于平行,求的值;
②若點是邊的中點,問在點運動的過程中,能否成為等腰三角形?若能,求出的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當x=0時,y2﹣y1=4
④2AB=3AC.
其中正確結(jié)論是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線交于點O,點E是菱形外一點,DE∥AC,CE∥BD.
(1)求證:四邊形DECO是矩形;
(2)連接AE交BD于點F,當∠ADB=30°,DE=3時,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B兩點的坐標分別為(2,0),(0,10),M是△AOB外接圓⊙C上的一點,且∠AOM=30°,則點M的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com