【題目】古語說:“春眠不覺曉”,每到初春時分,想必有不少人變得嗜睡,而且睡醒后精神不佳.我們可以在飲食方面進行防治,比如以下食物可防治春困:香椿、大蒜、韭菜、山藥、麥片.春天即將來臨時,某商人抓住商機,購進甲、乙、丙三種麥片,已知銷售每袋甲種麥片的利潤率為10%,每袋乙種麥片的利潤率為20%,每袋丙種麥片的利潤率為30%,當售出的甲、乙、丙三種麥片的袋數(shù)之比為1:3:1時,商人得到的總利潤率為22%;當售出的甲、乙、丙三種變片的袋數(shù)之比為3:2:1時,商人得到的總利潤率為20%:那么當售出的甲、乙、丙三種麥片的袋數(shù)之比為2:3;4時,這個商人得到的總利潤率為_____(用百分號表最終結(jié)果).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓, AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.
(1)求證:AE是⊙O的切線;
(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AGAB=36,tanB=,求DF的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=90°,∠DCB=90°,E、F分別是BD、AC的中點.
(1)請你猜想EF與AC的位置關(guān)系,并給予證明;
(2)當AC=16,BD=20時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為
A. B.3 C.1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù)的圖象上的一個動點,連接OA,若將線段O A繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖象的函數(shù)表達式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線l1:y=x+5與反比例函數(shù)y=(k≠0,x>0)圖象交于點A(1,n);另一條直線l2:y=﹣2x+b與x軸交于點E,與y軸交于點B,與反比例函數(shù)y=(k≠0,x>0)圖象交于點C和點D(,m),連接OC、OD.
(1)求反比例函數(shù)解析式和點C的坐標;
(2)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線l:y=x+2與x軸交于點A,與y軸交于點B,點C在x軸的正半軸上,且OC=2OB.
(1)點F是直線BC上一動點,點M是直線AB上一動點,點H為x軸上一動點,點N為x軸上另一動點(不與H點重合),連接OF、FH、FM、FN和MN,當OF+FH取最小值時,求△FMN周長的最小值;
(2)如圖2,將△AOB繞著點B逆時針旋轉(zhuǎn)90°得到△A′O′B,其中點A對應(yīng)點為A′,點O對應(yīng)點為O',連接CO',將△BCO'沿著直線BC平移,記平移過程中△BCO'為△B'C'O″,其中點B對應(yīng)點為B',點C對應(yīng)點為C',點O′對應(yīng)點為O″,直線C'O″與x軸交于點P,在平移過程中,是否存在點P,使得△O″PC為等腰三角形?若存在請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(a)所示,點是正方形內(nèi)的一點,把繞點順時針方向旋轉(zhuǎn),使點與點重合,點的對應(yīng)點是.若,,,求的度數(shù).
(2)如圖(b)所示,點是等邊三角形內(nèi)的一點,若,,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了擴大經(jīng)營,決定購進6臺機器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預(yù)算,本次購買機器所耗資金不能超過34萬元.
甲 | 乙 | |
價格(萬元/臺) | 7 | 5 |
每臺日產(chǎn)量(個) | 100 | 60 |
(1)按該公司要求可以有幾種購買方案?
(2)如果該公司購進的6臺機器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應(yīng)選擇什么樣的購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com