【題目】已知,,,滿足,,則__________.
【答案】60
【解析】
先利用單項式乘以多項式法則將要求值的多項式進行整理,將題目所給的有確定值的式子進行變形,得出所需要的式子的值,運用整體代入法既可求解.
∵m+n=p+q=4
∴(m+n)(p+q)=4×4=16
∵(m+n)(p+q)=mp+mq+np+nq
∴mp+mq+np+nq=16
∵mp+nq=6
∴mq+np=10
∴(m2+n2)pq+mn(p2+q2)
=m2pq+n2pq+mnp2+mnq2
=mpmq+npnq+mpnp+nqmq
=mpmq+mpnp+npnq+nqmq
=mp(mq+np)+np(nq+mq)
=(mp+nq)(np+mq)
=6×10
=60
故答案為:60
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,如圖∠BAC=90°,BD平分∠ABC,點E在BC上,DE∥AB,點F在BC上,連結(jié)AF,∠C=36°.
(1)求∠BDE的度數(shù);
(2)若∠BAF∶∠CAF=2∶3,求證:AF⊥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=8厘米,BC=6厘米,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動速度為1厘米/秒,點Q從點B開始沿B→C→A方向運動速度為2厘米/秒,若它們同時出發(fā),設(shè)出發(fā)的時間為t秒.
(1)求出發(fā)2秒后,PQ的長;
(2)點Q在CA邊上運動時,當(dāng)△BCQ成為等腰三角形時,求點Q的運動時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖)
請你根據(jù)圖中提供的信息,回答下列問題:
(1)扇形統(tǒng)計圖中a的值為 ,“活動時間為4天”的扇形所對圓心角的度數(shù)為 °,該校初一學(xué)生的總?cè)藬?shù)為 ;
(2)補全頻數(shù)分布直方圖;
(3)如果該市共有初一學(xué)生6000人,請你估計“活動時間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BD于E,CF⊥BD于F,連結(jié)AF,CE.求證:四邊形AECF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標系中,拋物線y=x2﹣2mx+m2+m的頂點為A,與y軸交于點B.當(dāng)拋物線不經(jīng)過坐標原點時,分別作點A、B關(guān)于原點的對稱點C、D,連結(jié)AB、BC、CD、DA.
(1)分別用含有m的代數(shù)式表示點A、B的坐標.
(2)判斷點B能否落在y軸負半軸上,并說明理由.
(3)連結(jié)AC,設(shè)l=AC+BD,求l與m之間的函數(shù)關(guān)系式.
(4)過點A作y軸的垂線,交y軸于點P,以AP為邊作正方形APMN,MN在AP上方,如圖②,當(dāng)正方形APMN與四邊形ABCD重疊部分圖形為四邊形時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊接到任務(wù)通知,需要修建一段長1800米的道路,按原計劃完成總?cè)蝿?wù)的后,為了讓道路盡快投入使用,工程隊將工作效率提高了50%,一共用了10小時完成任務(wù).
(1)按原計劃完成總?cè)蝿?wù)的時,已修建道路多少米?
(2)求原計劃每小時修建道路多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點.
(1)只用直尺(沒有刻度)和圓規(guī),求作一個點P,使點P同時滿足下列兩個條件
①點P到A,B兩點的距離相等;
②點P到的兩邊的距離相等.
(要求保留作圖痕跡,不必寫出作法)
(2)在(1)作出點P后,點P的坐標為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com