【題目】如圖所示.在△ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C任作一直線PQ,過(guò)點(diǎn)A作于點(diǎn)M,過(guò)點(diǎn)B作BNPQ于點(diǎn)N.
(1)如圖①,當(dāng)M、N在△ABC的外部時(shí),MN、AM、BN有什么關(guān)系呢?為什么?
(2)如圖②,當(dāng)M、N在△ABC的內(nèi)部時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)指出MN與AM、BN之間的數(shù)關(guān)系并說(shuō)明理由.
【答案】(1)MN=AM+BN,理由見(jiàn)解析;
(2)(1)中的結(jié)論不成立,MN與AM、BN之間的數(shù)量關(guān)系為MN=AM-BN.理由見(jiàn)解析.
【解析】
(1)先證明∠MAC=∠NCB,根據(jù)“AAS”證明△ACM≌△CBN,得出AM=CN,CM=BN,則MN=MC+CN=AM+BN;
(2)與(1)證明方法一樣可得到△ACM≌△CBN,得出AM=CN,CM=BN,故MN=CN-CM=AM-BN.
(1)MN=AM+BN,理由是:
∵AM⊥PQ于M,過(guò)B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=MC+CN=AM+BN;
即MN=AM+BN;
(2)(1)中的結(jié)論不成立,MN與AM、BN之間的數(shù)量關(guān)系為MN=AM-BN.理由如下:
∵AM⊥PQ于M,過(guò)B作BN⊥PQ于N,
∴∠AMC=∠CNB=90°,
∴∠MAC+∠ACM=90°,
∵∠ACB=90°,
∴∠ACM+∠NCB=90°,
∴∠MAC=∠NCB,
∵在△ACM和△CBN中
∴△ACM≌△CBN(AAS),
∴AM=CN,CM=BN,
∴MN=CN-CM=AM-BN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAC=90°,點(diǎn)B是射線AM上一個(gè)動(dòng)點(diǎn),點(diǎn)C是射線AN上的一個(gè)動(dòng)點(diǎn),且線段BC長(zhǎng)度不變,點(diǎn)D是A關(guān)于直線BC的對(duì)稱(chēng)點(diǎn),連接AD,若2AD=BC,則∠ABD的度數(shù)是____________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,C是AB上一點(diǎn),點(diǎn)D,E分別在AB兩側(cè),AD∥BE,且AD=BC,BE=AC.
(1)求證:CD=CE;
(2)連接DE,交AB于點(diǎn)F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市從 2018 年 1 月 1 日開(kāi)始,禁止燃油助力車(chē)上路,于是電動(dòng)自 行車(chē)的市場(chǎng)需求量日漸增多.某商店計(jì)劃最多投入 8 萬(wàn)元購(gòu)進(jìn) A、B 兩種型號(hào)的 電動(dòng)自行車(chē)共 30 輛,其中每輛 B 型電動(dòng)自行車(chē)比每輛 A 型電動(dòng)自行車(chē)多 500 元.用 5 萬(wàn)元購(gòu)進(jìn)的 A 型電動(dòng)自行車(chē)與用 6 萬(wàn)元購(gòu)進(jìn)的 B 型電動(dòng)自行車(chē)數(shù)量一 樣.
(1)求 A、B 兩種型號(hào)電動(dòng)自行車(chē)的進(jìn)貨單價(jià);
(2)若 A 型電動(dòng)自行車(chē)每輛售價(jià)為 2800 元,B 型電動(dòng)自行車(chē)每輛售價(jià)為 3500 元,設(shè)該商店計(jì)劃購(gòu)進(jìn) A 型電動(dòng)自行車(chē) m 輛,兩種型號(hào)的電動(dòng)自行車(chē)全部銷(xiāo)售 后可獲利潤(rùn) y 元.寫(xiě)出 y 與 m 之間的函數(shù)關(guān)系式;
(3)該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是-2,點(diǎn)B的橫坐標(biāo)是3,則以下結(jié)論:
①拋物線y=ax2(a≠0)的圖象的頂點(diǎn)一定是原點(diǎn);
②x>0時(shí),直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)的函數(shù)值都隨著x的增大而增大;
③AB的長(zhǎng)度可以等于5;
④△OAB有可能成為等邊三角形;
⑤當(dāng)-3<x<2時(shí),ax2+kx<b,
其中正確的結(jié)論是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)場(chǎng)學(xué)習(xí)題:
問(wèn)題背景:
在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為、、,求這個(gè)三角形的面積.
小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)請(qǐng)你將△ABC的面積直接填寫(xiě)在橫線上. .
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法,若△ABC三邊的長(zhǎng)分別為a,2a、a(a>0),請(qǐng)利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的△ABC,并求出它的面積是: .
探索創(chuàng)新:
(3)若△ABC三邊的長(zhǎng)分別為、、(m>0,n>0,m≠n),請(qǐng)運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫(huà)出示意圖,并求出△ABC的面積為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作探究:
數(shù)學(xué)研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學(xué)問(wèn)題》時(shí),出示如圖1所示的長(zhǎng)方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫(huà)一條截線段MN,將紙片沿MN折疊,MB與DN交于點(diǎn)K,得到△MNK.如圖2所示:
探究:
(1)若∠1=70°,∠MKN= °;
(2)改變折痕MN位置,△MNK始終是 三角形,請(qǐng)說(shuō)明理由;
應(yīng)用:
(3)愛(ài)動(dòng)腦筋的小明在研究△MNK的面積時(shí),發(fā)現(xiàn)KN邊上的高始終是個(gè)不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出△KMN的面積最小值為,此時(shí)∠1的大小可以為 °
(4)小明繼續(xù)動(dòng)手操作,發(fā)現(xiàn)了△MNK面積的最大值.請(qǐng)你求出這個(gè)最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,,點(diǎn)、分別是軸和軸上的一動(dòng)點(diǎn).
(1)如圖,若點(diǎn)的橫坐標(biāo)為,求點(diǎn)的坐標(biāo);
(2)如圖,交軸于,平分,若點(diǎn)的縱坐標(biāo)為,,求點(diǎn)的坐標(biāo).
(3)如圖,分別以、為直角邊在第三、四象限作等腰直角和等腰直角,交軸于,若,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com