【題目】如圖所示.在ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C任作一直線PQ,過(guò)點(diǎn)A于點(diǎn)M,過(guò)點(diǎn)BBNPQ于點(diǎn)N

1)如圖①,當(dāng)MNABC的外部時(shí),MNAM、BN有什么關(guān)系呢?為什么?

(2)如圖②,當(dāng)M、NABC的內(nèi)部時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)指出MNAM、BN之間的數(shù)關(guān)系并說(shuō)明理由.

【答案】1MN=AM+BN,理由見(jiàn)解析;

2)(1)中的結(jié)論不成立,MNAM、BN之間的數(shù)量關(guān)系為MN=AM-BN.理由見(jiàn)解析.

【解析】

1)先證明∠MAC=NCB,根據(jù)“AAS”證明ACM≌△CBN,得出AM=CN,CM=BN,則MN=MC+CN=AM+BN;
2)與(1)證明方法一樣可得到ACM≌△CBN,得出AM=CN,CM=BN,故MN=CN-CM=AM-BN

1MN=AM+BN,理由是:

AMPQM,過(guò)BBNPQN,
∴∠AMC=CNB=90°
∴∠MAC+ACM=90°,
∵∠ACB=90°,
∴∠ACM+NCB=90°,
∴∠MAC=NCB
∵在ACMCBN

∴△ACM≌△CBNAAS),
AM=CN,CM=BN,
MN=MC+CN=AM+BN

MN=AM+BN;

2)(1)中的結(jié)論不成立,MNAMBN之間的數(shù)量關(guān)系為MN=AM-BN.理由如下:
AMPQM,過(guò)BBNPQN,
∴∠AMC=CNB=90°,
∴∠MAC+ACM=90°,
∵∠ACB=90°,
∴∠ACM+NCB=90°,
∴∠MAC=NCB,
∵在ACMCBN

∴△ACM≌△CBNAAS),
AM=CN,CM=BN
MN=CN-CM=AM-BN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC90°,點(diǎn)B是射線AM上一個(gè)動(dòng)點(diǎn),點(diǎn)C是射線AN上的一個(gè)動(dòng)點(diǎn),且線段BC長(zhǎng)度不變,點(diǎn)DA關(guān)于直線BC的對(duì)稱(chēng)點(diǎn),連接AD,若2ADBC,則∠ABD的度數(shù)是____________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,CAB上一點(diǎn),點(diǎn)DE分別在AB兩側(cè),ADBE,且ADBCBEAC

1)求證:CDCE;

2)連接DE,交AB于點(diǎn)F,猜想BEF的形狀,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市從 2018 1 1 日開(kāi)始,禁止燃油助力車(chē)上路,于是電動(dòng)自 行車(chē)的市場(chǎng)需求量日漸增多某商店計(jì)劃最多投入 8 萬(wàn)元購(gòu)進(jìn) A、B 兩種型號(hào)的 電動(dòng)自行車(chē)共 30 輛,其中每輛 B 型電動(dòng)自行車(chē)比每輛 A 型電動(dòng)自行車(chē)多 500 元.用 5 萬(wàn)元購(gòu)進(jìn)的 A 型電動(dòng)自行車(chē)與用 6 萬(wàn)元購(gòu)進(jìn)的 B 型電動(dòng)自行車(chē)數(shù)量一 樣.

(1)求 A、B 兩種型號(hào)電動(dòng)自行車(chē)的進(jìn)貨單價(jià);

(2)若 A 型電動(dòng)自行車(chē)每輛售價(jià)為 2800 ,B 型電動(dòng)自行車(chē)每輛售價(jià)為 3500 元,設(shè)該商店計(jì)劃購(gòu)進(jìn) A 型電動(dòng)自行車(chē) m 輛,兩種型號(hào)的電動(dòng)自行車(chē)全部銷(xiāo)售 后可獲利潤(rùn) y 元.寫(xiě)出 y m 之間的函數(shù)關(guān)系式;

(3)該商店如何進(jìn)貨才能獲得最大利潤(rùn)?此時(shí)最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx+bk≠0)與拋物線y=ax2a≠0)交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是-2,點(diǎn)B的橫坐標(biāo)是3,則以下結(jié)論:

拋物線y=ax2a≠0)的圖象的頂點(diǎn)一定是原點(diǎn);

②x0時(shí),直線y=kx+bk≠0)與拋物線y=ax2a≠0)的函數(shù)值都隨著x的增大而增大;

③AB的長(zhǎng)度可以等于5;

④△OAB有可能成為等邊三角形;

當(dāng)-3x2時(shí),ax2+kxb,

其中正確的結(jié)論是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)場(chǎng)學(xué)習(xí)題:

問(wèn)題背景:

ABC中,AB、BCAC三邊的長(zhǎng)分別為、,求這個(gè)三角形的面積.

小輝同學(xué)在解答這道題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫(huà)出格點(diǎn)ABC(即ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需求ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.

1)請(qǐng)你將ABC的面積直接填寫(xiě)在橫線上.

思維拓展:

2)我們把上述求ABC面積的方法叫做構(gòu)圖法,若ABC三邊的長(zhǎng)分別為a,2a、aa0),請(qǐng)利用圖2的正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為a)畫(huà)出相應(yīng)的ABC,并求出它的面積是:

探索創(chuàng)新:

3)若ABC三邊的長(zhǎng)分別為、、m0,n0,m≠n),請(qǐng)運(yùn)用構(gòu)圖法在圖3指定區(qū)域內(nèi)畫(huà)出示意圖,并求出ABC的面積為:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作探究:

數(shù)學(xué)研究課上,老師帶領(lǐng)大家探究《折紙中的數(shù)學(xué)問(wèn)題》時(shí),出示如圖1所示的長(zhǎng)方形紙條ABCD,其中AD=BC=1,AB=CD=5.然后在紙條上任意畫(huà)一條截線段MN,將紙片沿MN折疊,MB與DN交于點(diǎn)K,得到MNK.如圖2所示:

探究:

(1)若1=70°,MKN= °;

(2)改變折痕MN位置,MNK始終是 三角形,請(qǐng)說(shuō)明理由;

應(yīng)用:

(3)愛(ài)動(dòng)腦筋的小明在研究MNK的面積時(shí),發(fā)現(xiàn)KN邊上的高始終是個(gè)不變的值.根據(jù)這一發(fā)現(xiàn),他很快研究出KMN的面積最小值為,此時(shí)1的大小可以為 °

(4)小明繼續(xù)動(dòng)手操作,發(fā)現(xiàn)了MNK面積的最大值.請(qǐng)你求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,,,點(diǎn)、分別是軸和軸上的一動(dòng)點(diǎn).

(1)如圖,若點(diǎn)的橫坐標(biāo)為,求點(diǎn)的坐標(biāo);

(2)如圖,軸于,平分,若點(diǎn)的縱坐標(biāo)為,,求點(diǎn)的坐標(biāo).

(3)如圖,分別以、為直角邊在第三、四象限作等腰直角和等腰直角,軸于,若,求.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列等式:,,,…,則第8個(gè)等式是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案