【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點(diǎn),
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求的值.
【答案】(1)(2)見(jiàn)解析;(3)
【解析】試題分析:(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可證得△ADC∽△ACB,然后由相似三角形的對(duì)應(yīng)邊成比例,證得AC2=ABAD;
(2)由E為AB的中點(diǎn),根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半,即可證得CE=AB=AE,繼而可證得∠DAC=∠ECA,得到CE∥AD;
(3)易證得△AFD∽△CFE,然后由相似三角形的對(duì)應(yīng)邊成比例,即可得到結(jié)論.
試題解析:(1)證明:∵AC平分∠DAB,∴∠DAC=∠CAB.∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=ABAD;
(2)證明:∵E為AB的中點(diǎn),∴CE=AB=AE,∴∠EAC=∠ECA.∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥A D;
(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF.∵CE= AB,∴CE=×6=3.∵AD=4,∴,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形 中,的平分線交于點(diǎn) , 的平分線 交于點(diǎn) ,則 的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)語(yǔ)句畫圖,并回答問(wèn)題,如圖,∠AOB內(nèi)有一點(diǎn)P.
(1)過(guò)點(diǎn)P畫PC∥OB交OA于點(diǎn)C,畫PD∥OA交OB于點(diǎn)D.
(2)寫出圖中與∠CPD互補(bǔ)的角 .(寫兩個(gè)即可)
(3)寫出圖中∠O相等的角 .(寫兩個(gè)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12,AD=4,BC=9,點(diǎn)P是AB上一動(dòng)點(diǎn).若△PAD與△PBC是相似三角形,則滿足條件的點(diǎn)P的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,弦AD⊥BC垂足為H,∠ABC=2∠CAD.
(1)如圖1,求證:AB=BC;
(2)如圖2,過(guò)點(diǎn)B作BM⊥CD垂足為M,BM交⊙O于E,連接AE、HM,求證:AE∥HM;
(3)如圖3,在(2)的條件下,連接BD交AE于N,AE與BC交于點(diǎn)F,若NH=2,AD=11,求線段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(B在C的左側(cè)),交y軸于A、D兩點(diǎn)(A在D的下方),AD=,將△ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到△MCB.
(1)求B、C兩點(diǎn)的坐標(biāo);
(2)請(qǐng)?jiān)趫D中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);
(3)動(dòng)直線l從與BM重合的位置開(kāi)始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線l與CM交點(diǎn)為E,點(diǎn)Q為BE的中點(diǎn),過(guò)點(diǎn)E作EG⊥BC于G,連接MQ、QG.請(qǐng)問(wèn)在旋轉(zhuǎn)過(guò)程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)在軸的正半軸上,點(diǎn)在函數(shù)的圖象上,點(diǎn)的坐標(biāo)為.
(1)求的值.
(2)將點(diǎn)沿軸正方向平移得到點(diǎn),當(dāng)點(diǎn)在函數(shù)的圖象上時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),連接EB,過(guò)點(diǎn)A作AM⊥BE,垂足為M,AM交BD于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖(2),若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交DB的延長(zhǎng)線于點(diǎn)F,其他條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com