【題目】如圖,O是邊長為1的等邊△ABC的中心,將AB、BC、CA分別繞點A、點B、點C順時針旋轉(zhuǎn)α(0°<α<180°),得到AB′、BC′、CA′,連接A′B′、B′C′、A′C′、OA′、OB′.(1)∠A′OB′=___°;(2)當α=___°時,△A′B′C′的周長最大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象相交于A、B兩點,且點A的坐標是(1,2),點B的坐標是(﹣2,w).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)在x軸的正半軸上找一點C,使△AOC的面積等于△ABO的面積,并求出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將面積為的矩形ABCD的四邊BA、CB、DC、AD分別延長至E、F、G、H,使得AE=CG,BF=BC, DH=AD,連接EF, FG,GH,HE,AF,CH.若四邊形EFGH為菱形,,則菱形EFGH的面積是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)
(1)判斷點M是否在直線y=﹣x+4上,并說明理由;
(2)將直線y=﹣x+4沿y軸平移,當它經(jīng)過M關(guān)于坐標軸的對稱點時,求平移的距離;
(3)另一條直線y=kx+b經(jīng)過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是⊙O上的兩個定點,P是⊙O上的動點(P不與A、B重合)、我們稱∠APB是⊙O上關(guān)于點A、B的滑動角.
(1)已知∠APB是⊙O上關(guān)于點A、B的滑動角,
①若AB是⊙O的直徑,則∠APB= °;
②若⊙O的半徑是1,AB=,求∠APB的度數(shù);
(2)已知O2是⊙O1外一點,以O2為圓心作一個圓與⊙O1相交于A、B兩點,∠APB是⊙O1上關(guān)于點A、B的滑動角,直線PA、PB分別交⊙O2于M、N(點M與點A、點N與點B均不重合),連接AN,試探索∠APB與∠MAN、∠ANB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(﹣3,m)和 Q(1,m)是拋物線y=x2+bx﹣3上的兩點.
(1)求b的值;
(2)將拋物線y=x2+bx﹣3的圖象向上平移k(是正整數(shù))個單位,使平移后的圖象與x軸無交點,求k的最小值;
(3)將拋物線y=x2+bx﹣3的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結(jié)合新圖象回答:當直線y=x+n與這個新圖象有兩個公共點時,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知動點P以2cm/s的速度沿如圖所示的邊框從B-C-D-E-F-A的路徑運動,記△ABP的面積為S (cm2), S與運動時間t (s)的關(guān)系如圖所示,若AB=6cm,請回答下列問題:
(1)如圖中BC=______cm, CD=______cm,DE=______cm
(2)求出如圖中邊框所圍成圖形的面積;
(3)求如圖中m、n的值;
(4)分別求出當點P在線段BC和DE上運動時S與t的關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線為拋物線、b、c為常數(shù),的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.
已知拋物線與其“夢想直線”交于A、B兩點點A在點B的左側(cè),與x軸負半軸交于點C.
填空:該拋物線的“夢想直線”的解析式為______,點A的坐標為______,點B的坐標為______;
如圖,點M為線段CB上一動點,將以AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的“夢想三角形”,求點N的坐標;
當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,點D是線段AB上的一點,連接CD,過點B作BG⊥CD,分別交CD,CA于點E,F,與過點A且垂直于AB的直線相交于點G,連接DF.給出以下四個結(jié)論:①②若點D是AB的中點,則AF=AB;③當B,C,F,D四點在同一個圓上時,DF=DB;④若,則,其中正確的結(jié)論序號是( )
A. ①② B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com