【題目】某大學(xué)生利用暑假40天社會實踐參與了某公司旗下一家加盟店經(jīng)營,了解到一種成本為20元/件的新型商品在第天銷售的相關(guān)信息如下表所示:
銷售量(件) | |
銷售單價(元/件) | 當(dāng)時, 當(dāng)時, |
(1)請計算第幾天該商品的銷售單價為35元/件;
(2)這40天中該加盟店第幾天獲得的利潤最大?最大利潤是多少?
(3)在實際銷售的前20天中,公司為鼓勵加盟店接收大學(xué)生參加實踐活動決定每銷售一件商品就發(fā)給該加盟店元獎勵,通過該加盟店的銷售記錄發(fā)現(xiàn),前10天中,每天獲得獎勵后的利潤隨時間(天)的增大而增大,求的取值范圍.
【答案】(1)10或35;(2)第21天時獲得最大利潤,最大利潤為725;(3).
【解析】
(1)分情況計算,當(dāng)時和當(dāng)時的函數(shù)值為35,然后求得對應(yīng)的x的值即可;
(2)分為當(dāng)時和當(dāng)時兩種情況,列出與天數(shù)的函數(shù)關(guān)系式,然后利用二次函數(shù)和反比例函數(shù)的性質(zhì)求解即可;
(3)先求得拋物線的對稱軸方程,然后依據(jù)前10天的利潤隨x的增大而增大列出關(guān)于m的不等式求解即可.
解:(1)當(dāng)時,,解得
當(dāng)時,,解得,
答:第10天或35天時,該商品銷售單價為35元/件,
故答案為:10;35;
(2)當(dāng)時,,
當(dāng)時,有最大值為612.5
當(dāng)時,,
當(dāng)時,有最大值為725,
∵,
∴第21天時獲得最大利潤,最大利潤為725元,
答:第21天時獲得最大利潤,最大利潤為725元,
故答案為:725;
(3),
∵前10天每天獲得獎勵后的利潤隨時間(天)的增大而增大,
∴對稱軸為,解得:
∴,
答:m的取值范圍為:,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設(shè)點P的橫坐標(biāo)為m.
(1)求此拋物線所對應(yīng)的函數(shù)表達式.
(2)求PF的長度,用含m的代數(shù)式表示.
(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解禁毒知識宣傳的效果,針對全校學(xué)生進行了一次測試,并隨機抽取 了部分學(xué)生的測試成績(滿分100分,最低分為60分,80分及以上為優(yōu)秀),統(tǒng)計后繪制成如下不完整的
請根據(jù)以上信息,解答下列問題:
(1)表中__________,_________;
(2)請補全頻數(shù)分布直方圖;
(3)若該校有學(xué)生2100人,試估計分數(shù)達到優(yōu)秀的有多少人;
(4)學(xué)校準(zhǔn)備從得分最高的5名學(xué)生(3男2女)中,隨機挑選2名學(xué)生去參加市里舉辦的禁毒知識競賽.小明說:“因為男生人數(shù)是女生人數(shù)的倍,所以選中的2名學(xué)生都是男生的概率是選中的2名學(xué)生都是女生的概率的倍.”他的說法正確嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC,BD⊥AC于點D,∠FAC=∠ABC,且∠FAC在AC下方.點P,Q分別是射線BD,射線AF上的動點,且點P不與點B重合,點Q不與點A重合,連接CQ,過點P作PE⊥CQ于點E,連接DE.
(1)若∠ABC=60°,BP=AQ.
①如圖1,當(dāng)點P在線段BD上運動時,請直接寫出線段DE和線段AQ的數(shù)量關(guān)系和位置關(guān)系;
②如圖2,當(dāng)點P運動到線段BD的延長線上時,試判斷①中的結(jié)論是否成立,并說明理由;
(2)若∠ABC=2α≠60°,請直接寫出當(dāng)線段BP和線段AQ滿足什么數(shù)量關(guān)系時,能使(1)中①的結(jié)論仍然成立(用含α的三角函數(shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折疊矩形ABCD,使點D落在BC邊上的點F處.
(1)求證:△ABF∽△FCE;
(2)若DC=8,CF=4,求矩形ABCD的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,函數(shù)y=(x>0)的圖象G經(jīng)過點A(4,1),與直線y=x+b的圖象交于點B,與y軸交于點C.其中橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記圖象G在點A、B之間的部分與線段OA、OC、BC圍成的區(qū)域(不含邊界)為W.若W內(nèi)恰有4個整點,結(jié)合函數(shù)圖象,b的取值范圍是( 。
A.﹣≤b<1或<b≤B.﹣≤b<1或<b≤
C.﹣≤b<﹣1或﹣<b≤D.﹣≤b<﹣1或<b≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設(shè)每個房間定價增加10 x元(x為整數(shù))。
(1)(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。
(2)(4分)設(shè)賓館每天的利潤為W元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
(3)(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費用沒有超過600元,③每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請你用學(xué)習(xí)“一次函數(shù)”時積累的經(jīng)驗和方法研究函數(shù)的圖象和性質(zhì),并解決問題.
完成下列步驟,畫出函數(shù)的圖象;
列表、填空;
x | 0 | 1 | 2 | 3 | |||||
y | 3 | ______ | 1 | ______ | 1 | 2 | 3 |
描點:
連線
觀察圖象,當(dāng)x______時,y隨x的增大而增大;
結(jié)合圖象,不等式的解集為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com