【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側,點B的坐標為(1,0)、C(0,﹣3).
(1)求拋物線的解析式.
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3)若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?如存在,求點P的坐標;若不存在,請說明理由.
【答案】(1)y=x2+x﹣3(2)(3)P1(﹣3,﹣3)或P2(,3)或P3(,3)
【解析】
(1)把點B(1,0)、C(0,﹣3)標代入拋物線y=ax2+3ax+c求出a,c的值即可;
(2)過點D作DE∥y軸交AC于E,利用待定系數(shù)法求出直線AC的解析式,故可得出DE=﹣(m+2)2+3,,再由當m=﹣2時,DE有最大值為3,此時,S△ACD有最大值,從而可求出結論;
(3) ①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥AC交x軸于點E1 ,此時四邊形ACP1E1為平行四邊形,根據(jù)PC兩點的縱坐標相等可得出P點坐標;②平移直線AC交x軸于點E,交x軸上方的拋物線于點P,當AC=PE時,四邊形ACEP為平行四邊形,令P(x,3),由x2+ x﹣3=3,得出x的值即可得出P點坐標.
(1)解:將點B、C的坐標代入拋物線的解析式得: ,
解得:a= ,c=﹣3.
∴拋物線的解析式為y= x2+ x﹣3.
(2)解:令y=0,則 x2+ x﹣3=0,解得x1=1,x2=﹣4,
∴A(﹣4,0)、B(1,0).
令x=0,則y=﹣3,
∴C(0,﹣3),
∴S△ABC= ×5×3= .
設D(m, m2+ m﹣3),
過點D作DE∥y軸交AC于E.直線AC的解析式為y=﹣ x﹣3,則E(m,﹣ m﹣3),
DE=﹣ m﹣3﹣( m2+ m﹣3)=﹣ (m+2)2+3,
當m=﹣2時,DE有最大值為3,
此時,S△ACD有最大值為 ×DE×4=2DE=6.
∴四邊形ABCD的面積的最大值為6+ = ,
(3)解:如圖所示:
①過點C作CP1∥x軸交拋物線于點P1 , 過點P1作P1E1∥AC交x軸于點E1 , 此時四邊形ACP1E1為平行四邊形,
∵C(0,﹣3),
∴設P1(x,﹣3),
∴ x2+ x﹣3=﹣3,
解得x1=0,x2=﹣3,
∴P1(﹣3,﹣3);
②平移直線AC交x軸于點E,交x軸上方的拋物線于點P,當AC=PE時,四邊形ACEP為平行四邊形,
∵C(0,﹣3),
∴設P(x,3),
∴ x2+ x﹣3=3,
解得x= 或x= ,
∴P2( ,3)或P3( ,3),
綜上所述存在3個點符合題意,坐標分別是P1(﹣3,﹣3)或P2( ,3)或P3( ,3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過B作BE⊥CD,垂足為點E,連接AE,F為AE上一點,且∠BFE=∠C.
(1)求證:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A1,A2,A3,…和B1,B2,B3,…分別在直線y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果點A1(1,1),那么點A2018的縱坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點P從A點出發(fā)沿A→C→B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B→C→A路徑向終點運動,終點為A點.點P和Q分別以每秒1cm和3cm的運動速度同時開始運動,當一個點到達終點時另一個點也停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.設運動時間為t秒,則當t=______秒時,△PEC與△QFC全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,平分交于點.
(1)若BC=7,BD=4,則點到的距離是________;
(2)若,點到的距離是8,則的長是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于實數(shù)a,我們規(guī)定:用符號[]表示不大于的最大整數(shù),稱[]為a的根整數(shù),例如:[]=3,[]=3.
(1)仿照以上方法計算:[]= ;[]= .
(2)若[]=1,寫出滿足題意的x的整數(shù)值 .
(3)如果我們對a連續(xù)求根整數(shù),直到結果為1為止.例如:對10連續(xù)求根整數(shù)2次[]=3→[]=1,這時候結果為1.對145連續(xù)求根整數(shù), 次之后結果為1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx﹣2與雙曲線y=-(x<0)交于點A,與x軸交于點C,與y軸交于點D.AB⊥x軸于點B,AE⊥y軸于點E, △ABC的面積為2.
(1)直接寫出四邊形OCAE的面積;
(2)求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關于x的函數(shù)關系式;
(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實際進貨時,廠家對A型電腦出廠價下調a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com