【題目】已知關(guān)于的一元二次方程.
(1)求證:無(wú)論為任何實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根為、,滿(mǎn)足,求的值;
(3)若△的斜邊為5,另外兩條邊的長(zhǎng)恰好是方程的兩個(gè)根、,求的內(nèi)切圓半徑.
【答案】(1)詳見(jiàn)解析;(2)2;(3)1
【解析】
(1)將二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng)分別代入根的判別式△中,并進(jìn)行整理,可得,恒大于等于0,故此一元二次方程無(wú)論為任何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根
(2)根據(jù)根與系數(shù)的關(guān)系可知,,將進(jìn)行分式的加法,再將,代入即可求得k.
(3)解一元二次方程可得,,由題意△的斜邊為5,通過(guò)勾股定理可求得,k=4,根據(jù)直角三角形中的內(nèi)切圓半徑為r=(a+b-c)/2 (a,b為直角邊,c為斜邊),代入即可求得半徑.
(1)證明:∵,
無(wú)論為任何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根.
(2)由題意得:,,
即,
解得:;
(3)解:
解方程得:,
根據(jù)題意得:,即
設(shè)直角三角形的內(nèi)切圓半徑為,如圖,
由切線(xiàn)長(zhǎng)定理可得:,
直角三角形的內(nèi)切圓半徑=;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C
(1)求點(diǎn)A、B的坐標(biāo);
(2)設(shè)D為已知拋物線(xiàn)的對(duì)稱(chēng)軸上的任意一點(diǎn),當(dāng)△ACD的面積等于△ACB的面積時(shí),求點(diǎn)D的坐標(biāo);
(3)若直線(xiàn)l過(guò)點(diǎn)E(4,0),M為直線(xiàn)l上的動(dòng)點(diǎn),當(dāng)以A、B、M為頂點(diǎn)所作的直角三角形有且只有三個(gè)時(shí),求直線(xiàn)l的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組的解集為x<﹣2,且使關(guān)于y的分式方的解為負(fù)數(shù),則符合條件的所有整數(shù)a的個(gè)數(shù)為( 。
A.4B.5C.6D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過(guò)點(diǎn)F作FG⊥AB于點(diǎn)G.
(1)試判斷FG與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AC=6,CD=5,求FG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在利用描點(diǎn)法畫(huà)二次函數(shù)y=ax2+bx+c(a=0)的圖象時(shí),先取自變量x的一些值,計(jì)算出相應(yīng)的函數(shù)值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接著,他在描點(diǎn)時(shí)發(fā)現(xiàn),表格中有一組數(shù)據(jù)計(jì)算錯(cuò)誤,他計(jì)算錯(cuò)誤的一組數(shù)據(jù)是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,AB=AD,CB=CD,∠ABC=∠ADC=90°,∠BAD=α,∠BCD=β,點(diǎn)E,F是四邊形ABCD內(nèi)的兩個(gè)點(diǎn),滿(mǎn)足∠EAF=,∠ECF=,連接BE,EF,FD.
(1)如圖1,當(dāng)α=β時(shí),判斷∠ABE和∠ADF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)當(dāng)α≠β時(shí),用等式表示線(xiàn)段BE,EF,FD之間的數(shù)量關(guān)系(直接寫(xiě)出即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)現(xiàn)有的五個(gè)社團(tuán):.文學(xué),.辯論,.體育,.奧數(shù),.圍棋,為了選出“你最喜愛(ài)的社團(tuán)”,在部分同學(xué)中開(kāi)展了調(diào)查( 每名被調(diào)查的同學(xué)必須且只能選出一個(gè)社團(tuán)),并將調(diào)查結(jié)果進(jìn)行了統(tǒng)計(jì),繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
求本次被調(diào)查的人數(shù);
將上面兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
若該學(xué)校大約有學(xué)生人,請(qǐng)你估計(jì)喜歡體育社團(tuán)的人數(shù);
學(xué)校為社團(tuán)安排了號(hào)教室供社團(tuán)活動(dòng)使用,文學(xué)設(shè)社和辯論社使用的教室恰好相鄰的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△A1C1C2的周長(zhǎng)為1,作C1D1⊥A1C2于D1,在C1C2的延長(zhǎng)線(xiàn)上取點(diǎn)C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長(zhǎng)線(xiàn)上取點(diǎn)C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點(diǎn)A1,A2,A3,…都在直線(xiàn)C1C2同側(cè),如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,則△AnCnCn+1的周長(zhǎng)為_______(n≥1,且n為整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】彈簧原長(zhǎng)(不掛重物)15cm,彈簧總長(zhǎng)L(cm)與重物質(zhì)量x(kg)的關(guān)系如下表所示:
彈簧總長(zhǎng)L(cm) | 16 | 17 | 18 | 19 | 20 |
重物重量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
當(dāng)重物質(zhì)量為5kg(在彈性限度內(nèi))時(shí),彈簧總長(zhǎng)L(cm)是( 。
A.22.5B.25C.27.5D.30
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com