【題目】已知:ABC中,AB=AC,BAC=90°

(1)如圖(1),CD平分∠ACBAB于點(diǎn)D,BECD于點(diǎn)E,延長(zhǎng)BE、CA相交于點(diǎn)F,請(qǐng)猜想線段BECD的數(shù)量關(guān)系,并說(shuō)明理由.

(2)如圖(2),點(diǎn)FBC上,∠BFE=ACB,BEFE于點(diǎn)E,ABFE交于點(diǎn)D,F(xiàn)HACABH,延長(zhǎng)FH、BE相交于點(diǎn)G,求證:BE=FD;

(3)如圖(3),點(diǎn)FBC延長(zhǎng)線上,∠BFE=ACB,BEFE于點(diǎn)E,F(xiàn)EBA延長(zhǎng)線于點(diǎn)D,請(qǐng)你直接寫(xiě)出線段BEFD的數(shù)量關(guān)系(不需要證明).

【答案】(1)BE=CD.(2)證明見(jiàn)解析;(3)BE=FD.證明見(jiàn)解析.

【解析】

(1)先利用AAS證明ABF≌△ACD,得到BF=CD,再利用ASA證明BCE≌△FCE,從而得到BE=FE=BF,進(jìn)而得出BE=CD;

(2)利用等角對(duì)等邊證明BH=FH,再通過(guò)證明BFE≌△GFE,得到BE=GB,再證明BHG≌△FHD,得到BG=FD,從而得到BE=FD;

(3)利用相同的方法可得BFFD的關(guān)系.

(1)猜想:BE=CD.

理由:∵BE⊥CD,∠BAC=90°,∠BDE=∠ADC,

∴∠ABF=∠ACD,∠BAF=∠BAC.

在△ABF和△ACD中,

∴△ABF≌△ACD(AAS).

∴BF=CD.

∵CD平分∠ACB,

∴∠BCE=∠FCE.

∵BE⊥CD,

∴∠BEC=∠FEC=90°.

在△BCE和△FCE中,

,

∴△BCE≌△FCE(ASA).

∴BE=FE=BF.

∴BE=CD.

(2)證明:∵AB=AC,F(xiàn)H∥AC

∴∠ABC=∠ACB,∠BFH=∠ACB.

∴∠BHF=∠BAC=90°.∠ABC=∠BFH.

∴BH=FH.

∵∠BFE=∠ACB,

∴∠EFG=∠ACB.

∴∠BFE=∠EFG.

∵BE⊥FE,

∴∠BEF=∠GEF.

在△BFE和△GFE中,

,

∴△BFE≌△GFE(ASA).

∴BE=GE.

∴BE=GB.

在△BHG和△FHD中,

,

∴△BHG≌△FHD(ASA).

∴BG=FD,

∴BE=FD.

(3)BE=FD.

證明:過(guò)點(diǎn)FGF∥AC,交BE,AD延長(zhǎng)線于點(diǎn)G,H

∴∠BFG=∠ACB

∵∠BFE=∠ACB

∴∠BFE=∠GFE

在△FBE和△FBG

,

∴△FBE≌△FBG(ASA)

∴∠EFB=∠EFG

BE=EG=BG

∵FG∥AC

∴∠BAC=∠BHF=90°

在四邊形GEDH

∠G+∠EDG=180°

又∵∠HDF+∠EDH=180°

∴∠HDF=∠G

在△DHF和△GHB

,

∴△DHF≌△GHB(AAS)

∴BG=DF

∴BE=FD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去.若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次科技活動(dòng)中,小明進(jìn)行了模擬雷達(dá)掃描實(shí)驗(yàn).如圖,表盤(pán)是△ABC,其中AB=AC,∠BAC=120°,在點(diǎn)A處有一束紅外光線AP,從AB開(kāi)始,繞點(diǎn)A逆時(shí)針勻速旋轉(zhuǎn),每秒鐘旋轉(zhuǎn)15°,到達(dá)AC后立即以相同旋轉(zhuǎn)速度返回AB,到達(dá)后立即重復(fù)上述旋轉(zhuǎn)過(guò)程.小明通過(guò)實(shí)驗(yàn)發(fā)現(xiàn),光線從AB處旋轉(zhuǎn)開(kāi)始計(jì)時(shí),旋轉(zhuǎn)1秒,此時(shí)光線AP交BC邊于點(diǎn)M,BM的長(zhǎng)為(20 ﹣20)cm.
(1)求AB的長(zhǎng);
(2)從AB處旋轉(zhuǎn)開(kāi)始計(jì)時(shí),若旋轉(zhuǎn)6秒,此時(shí)光線AP與BC邊的交點(diǎn)在什么位置?若旋轉(zhuǎn)2014秒,交點(diǎn)又在什么位置?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人以相同路線前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l(wèi)、l分別表示甲、乙兩人前往目的地所走的路程S(km)隨時(shí)間t(分)變化的函數(shù)圖象.以下說(shuō)法:①乙比甲提前12分鐘到達(dá);②甲的平均速度為15千米/小時(shí);③乙走了8km后遇到甲;④乙出發(fā)6分鐘后追上甲.其中正確的有(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接“六一”兒童節(jié)的到來(lái),某校學(xué)生參加獻(xiàn)愛(ài)心捐款活動(dòng),隨機(jī)抽取該校部分學(xué)生的捐款數(shù)進(jìn)行統(tǒng)計(jì)分析,相應(yīng)數(shù)據(jù)的統(tǒng)計(jì)圖如下:
(1)該樣本的容量是 , 樣本中捐款15元的學(xué)生有人;
(2)若該校一共有500名學(xué)生,據(jù)此樣本估計(jì)該校學(xué)生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣ x2+ x+2的圖象與x軸交于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的左側(cè)),與y軸交于點(diǎn)C.過(guò)動(dòng)點(diǎn)H(0,m)作平行于x軸的直線l,直線l與二次函數(shù)y=﹣ x2+ x+2的圖象相交于點(diǎn)D,E.

(1)寫(xiě)出點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)若m>0,以DE為直徑作⊙Q,當(dāng)⊙Q與x軸相切時(shí),求m的值;
(3)直線l上是否存在一點(diǎn)F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng):探究利用角的對(duì)稱(chēng)性構(gòu)造全等三角形解決問(wèn)題

(1)如圖①,OP是∠MON的平分線,請(qǐng)你利用該圖形畫(huà)一對(duì)以OP所在直線為對(duì)稱(chēng)軸的全等三角形;(寫(xiě)出簡(jiǎn)單做法,不用證明兩三角形全等,不用尺規(guī)作圖亦可)

(2)如圖②,在ABC中,∠ACB=90°,B=60°,AD、CE分別是∠BAC、BCA的平分線,AD、CE相交于點(diǎn)F.請(qǐng)直接填空:AFE= 度,DF EF(>,<=);

(3)如圖③,在ABC中,如果∠ACB≠90°,而(2)中的其他條件不變,請(qǐng)問(wèn),你在(2)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正反比例函數(shù)的圖像交于、兩點(diǎn),過(guò)第二象限的點(diǎn),點(diǎn)的橫坐標(biāo)為,,點(diǎn)在第四象限

(1)求這兩個(gè)函數(shù)解析式;

(2)求這兩個(gè)函數(shù)圖像的交點(diǎn)坐標(biāo);

(3)若點(diǎn)在坐標(biāo)軸上,聯(lián)結(jié)、寫(xiě)出當(dāng)時(shí)的點(diǎn)坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店銷(xiāo)售面向中考生的計(jì)數(shù)跳繩,每根成本為20元,銷(xiāo)售的前40天內(nèi)的日銷(xiāo)售量m(根)與時(shí)間t(天)的關(guān)系如表.

時(shí)間t(天)

1

3

8

10

26

日銷(xiāo)售量m(件)

51

49

44

42

26

前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為:y1= t+25(1≤t≤20且t為整數(shù));后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為:y2=﹣ t+40(21≤t≤40且t為整數(shù)).
(1)認(rèn)真分析表中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù),二次函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)m(件)與t(天)之間的關(guān)系式;
(2)請(qǐng)計(jì)算40天中娜一天的日銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?
(3)在實(shí)際銷(xiāo)售的前20天中,該公司決定每銷(xiāo)售一件商品就捐贈(zèng)a元利潤(rùn)(a<3)給希望工程,公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),前20天中扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t(天)的增大而增大,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案