【題目】如圖,矩形ABCD中,AB=6,BC=8,動點P從點A出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

【答案】D
【解析】解:①點P在AB上時,0≤x≤6,點D到AP的距離為AD的長度,是定值8;
②點P在BC上時,6<x≤10,
∵∠APB+∠BAP=90°,
∠PAD+∠BAP=90°,
∴∠APB=∠PAD,
又∵∠B=∠DEA=90°,
∴△ABP∽△DEA,
,
=
∴y= ,
縱觀各選項,只有D選項圖形符合.
故選:D.

【考點精析】掌握函數(shù)的圖象是解答本題的根本,需要知道函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程
(1)7x(5x+2)=6(5x+2)
(2)4x2﹣8x+1=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(10,0),B(4,8),C(0,8),連接AB,BC,點P在x軸上,從原點O出發(fā),以每秒1個單位長度的速度向點A運動,同時點M從點A出發(fā),以每秒2個單位長度的速度沿折線A﹣B﹣C向點C運動,其中一點到達終點時,另一點也隨之停止運動,設P,M兩點運動的時間為t秒.

(1)求AB長;
(2)設△PAM的面積為S,當0≤t≤5時,求S與t的函數(shù)關系式,并指出S取最大值時,點P的位置;
(3)t為何值時,△APM為直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是AC邊上一點,且AD=2DC,E是AB邊上一點,ED與BC的延長線相交于點F,且BC=CF,G是EF的中點,連接CG,若CG=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B兩點的坐標分別為(40,0)和(0,30),動點P從點A開始在線段AO上以每秒2個長度單位的速度向原點O運動、動直線EF從x軸開始以每1個單位的速度向上平行移動(即EF∥x軸),并且分別與y軸、線段AB交于點E,F(xiàn),連接EP,F(xiàn)P,設動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)求t=15時,△PEF的面積;
(2)直線EF、點P在運動過程中,是否存在這樣的t,使得△PEF的面積等于160(平方單位)?若存在,請求出此時t的值;若不存在,請說明理由.
(3)當t為何值時,△EOP與△BOA相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知銳角△ABC中,邊BC長為12,高AD長為8.
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K.
①求 的值;
②設EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關系式,并求S的最大值;
(2)若AB=AC,正方形PQMN的兩個頂點在△ABC一邊上,另兩個頂點分別在△ABC的另兩邊上,直接寫出正方形PQMN的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為培養(yǎng)學生良好學習習慣,某學校計劃舉行一次“整理錯題集”的展示活動,對該校部分學生“整理錯題集”的情況進行了一次抽樣調查,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.請根據(jù)圖表中提供的信息,解答下列問題:

整理情況

頻數(shù)

頻率

非常好

0.21

較好

70

一般

不好

36


(1)本次抽樣共調查了多少學生?
(2)補全統(tǒng)計表中所缺的數(shù)據(jù).
(3)該校有1500名學生,估計該校學生整理錯題集情況“非常好”和“較好”的學生一共約多少名?
(4)某學習小組4名學生的錯題集中,有2本“非常好”(記為A1、A2),1本“較好”(記為B),1本“一般”(記為C),這些錯題集封面無姓名,而且形狀、大小、顏色等外表特征完全相同,從中抽取一本,不放回,從余下的3本錯題集中再抽取一本,請用“列表法”或“畫樹形圖”的方法求出兩次抽到的錯題集都是“非常好”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=﹣ ,下列結論不正確的是(
A.圖象必經(jīng)過點(﹣1,2)
B.y隨x的增大而增大
C.圖象在第二、四象限內
D.若x>1,則y>﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與一次函數(shù)y=﹣x+4分別交y軸、x軸于A、B兩點.

(1)求這個拋物線的解析式;
(2)設P(x,y)是拋物線在第一象限內的一個動點,過點P作直線PH⊥x軸于點H,交直線AB于點M.
①求當x取何值時,PM有最大值?最大值是多少?
②當PM取最大值時,以A、P、M、N為頂點構造平行四邊形,求第四個頂點N的坐標.

查看答案和解析>>

同步練習冊答案